On the solution of second order singular perturbation problems by generalized upwind methods

Pierluigi Amodio, Giuseppina Settanni

Dipartimento di Matematica, Università di Bari (Italy)

Abstract

The solution of second order singular perturbation BVPs is one of the most challenging ODE problems [4]. Several codes for BVPs have been specialized in order to solve the most difficult problems (see, for example, COLMOD and ACDC written by Cash and Wright [5, 6]).

In a recent paper [1] we proposed a simple and quite efficient code to solve linear singular perturbation problems when the perturbation parameter is very small. The code is based on generalized upwind methods of order ranging from 4 to 10 and uses highly variable stepsize to fit the boundary regions with relatively few points. We now analyze the solution of nonlinear problems by means of a simple quasi-linearization technique that allows to compute a variable mesh maintaining the same peculiarity of the linear code.

References

- P. Amodio, G. Settanni, Variable step/order generalized upwind methods for the numerical solution of second order singular perturbation problems, J. Numer. Anal., Industrial and Applied Mathematics, in press.
- [2] P. Amodio, I. Sgura, High Order Finite Difference Schemes for the Solution of Second Order BVPs, J. Comput. Appl. Math. 176 (2005), 59–76.
- [3] P. Amodio, I. Sgura, High Order Generalized Upwind Schemes and the Numerical Solution of Singular Perturbation Problems, BIT Numer. Math. 47 (2007), 241-257.
- [4] J. Cash, BVP software web page, http://www.ma.ic.ac.uk/~jcash/BVP_software/readme.html
- [5] J.R. Cash, G. Moore and R.W. Wright, An automatic continuation strategy for the solution of singularly perturbed linear two-point boundary value problems, J. Comput. Phys. **122** (1995), 266-279.
- [6] J.R. Cash and M.H. Wright, A deferred correction method for nonlinear twopoint boundary value problems: Implementation and numerical evaluation, SIAM J. Sci. Stat. Comput. 12 (1991), 971-989.