PROGRAMMA DEL CORSO DI RICERCA OPERATIVA 2

Prof. Luigi Brugnano

Corso di Laurea in Matematica, a.a. 2000-01.

Problemi di Programmazione Nonlineare non vincolata. Generalita’ ed esempi. Minimi locali e globali: direzioni ammissibili, condizioni necessarie del primo e secondo ordine, condizioni sufficienti. Approssimazione lineare ai minimi quadrati. Funzioni convesse. Algoritmi iterativi di discesa: ordine e convergenza. Minimizzazione unidimensionale: il metodo di Fibonacci ed il metodo della sezione aurea, richiami su equazioni alle differenze lineari, il metodo di Newton, metodo delle secanti, fit quadratico e cubico. Convergenza globale dei metodi di fit. Metodi line-search: genralita’, il metodo del gradiente, precondizionamento, metodi coordinate-descent, di Newton e tipo Levemberg-Marquardt. Il metodo delle direzioni coniugate: generalita’, il metodo del gradiente coniugato, estensione al caso non quadratico. Metodi quasi-Newton: generalita’, correzione di rango uno, il metodo di Davidon-Fletcher and Powell, formule complementari e metodi della famiglia di Broyden, il metodo DFP con autoscaling, metodi ibridi. Cenni sui metodi Trust-region: generalita’ e punto di Cauchy, il metodo "dogleg" e minimizzazione bidimensionale, minimizzazione esatta per i metodi trust-region.

Problemi di Programmazione Nonlineare vincolata. Generalita’, vincoli attivi e piano tangente. Condizioni del primo ordine per vincoli di uguaglianza. Il problema della catenaria. Condizioni del secondo ordine, Caso generale: condizioni di Kuhn-Tucker e condizioni del secondo ordine, condizionamento. Cenni sui metodi di penalita’ e sui metodi barriera. Esempio.

Corso integrativo. Tecniche di ottimizzazione applicate alla struttura del genoma (prof. M.Levitt, University of Satnford, Stanford, USA).

 

Testi consigliati.