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1. Introduction

Let X be a Lebesgue-measurable set of finite measure in the Euclidean space Rn.
The covariogram gX of X is the function on Rn defined by

(1.1) gX(x) = Hn(X ∩ (X + x)), x ∈ Rn,

where Hn stands for the n-dimensional Hausdorff measure. This function was
introduced by Matheron in his book [52, Section 4.3] on random sets and it coincides
with the autocorrelation of the characteristic function 1X of X; that is,

(1.2) gX = 1X ∗ 1(−X).

The covariogram gX is clearly unchanged with respect to translations and reflections
of X, where, throughout the paper, reflection means reflection in a point. In 1986
Matheron [51, p. 20] asked the following question and conjectured a positive answer
for the case n = 2 (Matheron’s Conjecture).

Covariogram Problem. Does the covariogram determine a convex body in Rn,
among all convex bodies, up to translations and reflections?

We recall that a convex body in Rn is a compact convex set with nonempty
interior, and we refer to the next section for all unexplained definitions. More
generally, what information about a set, not necessarily convex, can be obtained
from its covariogram? The covariogram appears in very different contexts, and the
covariogram problem can be rephrased in different terms. Indeed, it is equivalent to
any of the following problems.

Problem 1.1. Determine a convex body K from the knowledge, for each unit vector
u in Rn, of the distribution of the lengths of the chords of K parallel to u.

Problem 1.2. Determine a convex body K from the distribution of W − Z, where
W and Z are independent random variables uniformly distributed over K.

Problem 1.3. Determine the characteristic function 1K of a convex body K from

the modulus of its Fourier transform 1̂K .

In Problem 1.1 a random chord parallel to u is obtained by taking the intersection
of K with a random line Lu parallel to u, conditioned on K ∩Lu ̸= ∅. Matheron [52,
p. 86] explained the relation between Problem 1.1 and the covariogram of a set; see
also Nagel [55]. Remark 2.3 in the next section explains this equivalence in detail.
Blaschke [62, Section 4.2] asked whether the distribution of the lengths of all chords
(that is, not separated direction by direction) of a planar convex body determines
that body, up to isometries in R2. Mallows and Clark [50] constructed polygonal
examples that show that the answer is negative in general. Gardner, Gronchi and
Zong [33] observed that the distribution of the lengths of the chords of K parallel
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to u coincides, up to a multiplicative factor, with the rearrangement of the X-ray of
K in the direction u, and rephrased Problem 1.1 in these terms.

Problem 1.2 was asked by Adler and Pyke [1] in 1991. By (1.2) we see that the
distribution of W − Z coincides with gK/Hn(K)2. Since gK(o) = Hn(K), knowing
the covariogram is equivalent to knowing the distribution of W − Z. In stochastic
geometry, integrals of functions of W −Z can be written in terms of the covariogram,
as in the formula (called Borel’s overlap formula in [21])∫

X×X

f(x− y) dx dy =

∫
Rn

f(z) gX(z) dz,

valid, say, when X ∈ Ln is bounded and f ∈ L1
loc(Rn). Recent studies showing

connections between the covariogram and stereology and stochastic geometry are
[22], [37], [57] and [58].

Problem 1.3 is a special case of the Phase Retrieval Problem, where 1K is replaced
by a function with compact support. The equivalence of the problems comes by
applying the Fourier transform to (1.2). One obtains, for x ∈ Rn,

(1.3) ĝK(x) = 1̂K(x)1̂−K(x) = 1̂K(x)1̂K(x) = |1̂K(x)|2.
The Phase Retrieval Problem arises naturally and frequently in various areas of
science, such as X-ray crystallography, electron microscopy, optics, astronomy and
remote sensing, in which only the magnitude of the Fourier transform can be
measured and the phase is lost. The literature is vast; see the surveys [42], [44], [48],
[54] and [59], as well as the references given there. Phase retrieval is fundamentally
under-determined without additional constraints, and our problem is the Phase
Retrieval Problem with the constraint f = 1K , the characteristic function of a
convex body K in Rn.

Baake and Grimm [8] have observed that the Covariogram Problem is relevant for
the inverse problem of finding the atomic structure of a quasicrystal from its X-ray
diffraction image. It turns out that quasicrystals can often be described by means
of the so-called cut-and-project scheme. In this scheme a quasiperiodic discrete
subset S of Rm, m ∈ N, which models the atomic structure of a quasicrystal, is
described as the orthogonal projection of Z ∩ (Rm ×W ) onto Rm, where W is a
subset of Rn and Z is a lattice in Rm × Rn. For many quasicrystals, the lattice Z
can be recovered from the diffraction image of S. Thus, in order to determine S, it
is necessary to know W . The Covariogram Problem enters at this point, since gW
can be obtained from the diffraction image of S. Note that the set W is in many
cases a convex body.

The first partial solution of Matheron’s Conjecture was given by Nagel [55] in
1993, who confirmed it for all convex polygons. A complete positive answer in
the plane is contained in the combined works of Bianchi [14] and Averkov and
Bianchi [4]. In higher dimensions, the first result was a positive one valid for a
class of convex polytopes by Goodey, Schneider and Weil [38]. This result implies
that most (in the sense of Baire category) convex bodies are determined by their
covariograms. It is easy to see that centrally symmetric convex bodies are determined.
Bianchi [15] proved a positive answer for convex polytopes in R3, and in [14] found
counterexamples in Rn, for any n ≥ 4, which may be chosen to be polytopes.
Whether arbitrary convex bodies in R3 are determined is not yet known. Regarding
strictly convex bodies K ⊂ Rn, n ≥ 3, of class Cm

+ , Bianchi [18] proves a positive
answer when m is higher than a threshold which depends on n.
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Methods of Fourier analysis are relevant in attacking the Covariogram Problem.

Studies of the asymptotic behaviour of 1̂K(ξ), where ξ ∈ Rn and |ξ| → ∞, initiated
by Haviland and Wintner [39], provide information about curvatures, for strictly
convex and sufficiently smooth convex bodies, at points of the boundary with
opposite outer normals (see Section 3.1 for the planar case). For the same class

of convex bodies, studies of the zero set of 1̂K(ζ), seen as a function of ζ ∈ Cn,
by Kobayashi [45] play a fundamental role in resolving some ambiguities in their
determination (see Section 3.5). Some results on the Phase Retrieval Problem
applied to our situation show a connection between the determination of K and the

irreducibility of 1̂K . In Section 7 we explain this and also why this property of of

1̂K is related to the Pompeiu Problem in integral geometry.
Section 3 is devoted to the Covariogram Problem and is divided into subsections.

Section 3.1 explains the ideas behind the proof of the positive result in the plane;
Section 3.4 does the same for the result on polytopes in R3; Sections 3.2 and 3.3
treat, respectively, the examples of nondetermination in dimension n ≥ 4 and the
results for convex polytopes in dimension n ≥ 3. Section 3.6 presents the associated
problem of determination from the cross-covariogram. The cross-covariogram gK,L

of two measurable sets K,L ⊂ Rn is the function that associates to x ∈ Rn the
volume Hn(K ∩ (L+ x)). It appears naturally in our study, and it is also natural
to ask whether gK,L determines both K and L, up to the inherent ambiguities.
Surprisingly, in certain classes of sets it does. One such class is that of C8

+-regular
planar convex bodies. The case of convex polygons is also completely solved, with
the understanding of exactly which pairs are determined and which pairs are not.
Section 4 is devoted to algorithms for reconstruction. Section 5 presents examples
of information that can be obtained from the covariogram of sets that are not
necessarily convex. In particular, it deals with the possibility of recognizing whether
a set is convex, whether it is centrally symmetric, and whether it is radial. Section 6
is devoted to the counterpart of the covariogram in the discrete case. We explain
the relation between the continuous and the discrete covariogram and how this was
used in [33] to construct a pair of noncongruent nonconvex polygons with equal
covariograms. Later a whole family of such pairs was found; each set in these pairs
is a horizontally and vertically convex union of lattice squares. These examples show
that the convexity assumption in the Covariogram Problem cannot be significantly
weakened. Baake and Grimm [8] use the pair in [33] to construct two different
quasicrystal model sets in R2 with equal diffraction images.

Some aspects of the Covariogram Problem have been neglected in this survey.
We briefly mention two.

In many situations where we have a positive answer to the Covariogram Problem,
knowledge of the covariogram on a proper subset of its domain still suffices. For
instance, the results in Bianchi, Gardner and Kiderlen [19] show that if a convex
body is determined, up to translations and reflections, by its covariogram, then it is
also so determined by its values at certain countable sets of points, even, almost
surely, when these values are contaminated with noise. The recent paper by Engel
and Laasch [25] proves that if P, P ′ ⊂ R3 are convex polytopes and E ⊂ R3 is the

nonempty intersection of an open set with a sphere and |1̂P (ξ)| = |1̂P ′(ξ)|, for each
ξ ∈ E, then P = P ′, up to translations and reflections. Averkov and Bianchi [3] also
find some results where restricted information about the covariogram is sufficient
for determination.
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Substituting, in the definition of the covariogram, the volume with a different
functional, like the surface area or other valuations, one defines different covariograms,
and for each of them there is a corresponding covariogram problem. Averkov and
Bianchi [5] study, for planar convex bodies, the problems associated to the perimeter
covariogram and to the width covariogram.

2. Definitions, notations and preliminaries

As usual, Sn−1 denotes the unit sphere, Bn the unit ball and o the origin in the
Euclidean n-space Rn. If x, y ∈ Rn, then ⟨x, y⟩ is the scalar product of x and y,
while |x| is the norm of x. If ζ ∈ Cn and ζ = x+ i y, with x, y ∈ Rn, then Re ζ and
Im ζ denote respectively x and y. Moreover |ζ| = (|Re ζ|2 + | Im ζ|2)1/2 denotes the
norm of ζ. For δ > 0, B(x, δ) denotes {y ∈ Rn : |y − x| < δ}.

If X and Y are sets in Rn, we denote by linX, affX, convX, clX, intX and 1X
the linear hull, affine hull convex hull, closure, interior and characteristic function
of X, respectively. Also, relintX is the relative interior of X, that is, the interior
of X relative to affX. The symbol |X| denotes the cardinality of X. If t ∈ R, then
tX = {tx : x ∈ X}, X + Y = {x+ y : x ∈ X, y ∈ Y } denotes the Minkowski sum of
X and Y , and

DX = X + (−X)

the difference set of X. A set is o-symmetric if it is centrally symmetric, with center
at the origin.

A lattice set is a finite subset of Zn and a lattice body is a subset P of Rn which
can be written as P = A+[0, 1]n, where A is a lattice set. We call P the lattice body
associated to A and A the lattice set associated to P . A lattice set whose associated
lattice body has connected interior is called a polyomino. Lattice bodies associated
to polyominoes are called lattice animals (or polyominoes, by many authors). A
lattice set A is convex if A = (convA) ∩ Zn.

If u ∈ Sn−1 then u⊥ = {x ∈ Rn : ⟨x, u⟩ = 0}. If E is a linear subspace of Rn,
then X|E is the orthogonal projection of X on E and x|E is the projection of a
vector x ∈ Rn on E. The symbol Rπ

2
denotes a counterclockwise rotation in R2 by

π/2.
For i ∈ {0, 1, . . . , n}, we write Hi for i-dimensional Hausdorff measure in Rn. We

write ωn for the surface area of the unit ball in Rn. We denote by Cn, Mn and Ln

the class of nonempty compact sets, Hn -measurable sets and Hn -measurable sets
of finite measure, respectively, in Rn. A compact set X is regular if X = cl intX.
The Hausdorff distance δ(C,D) between two sets C,D ∈ Cn is defined as

δ(C,D) = min{ε ≥ 0 : C ⊂ D + εBn, D ⊂ C + εBn}.
Let Kn be the class of nonempty compact convex subsets of Rn and let Kn

n be the
class of convex bodies, i.e., members of Kn with interior points. The treatise of
Schneider [66] is an excellent general reference for convex geometry. For K ∈ Kn,
the function

hK(u) = max{⟨u, y⟩ : y ∈ K},
for u ∈ Rn, is the support function of K,

wK(u) = hK(u) + hK(−u),

its width function and

bK(u) = Hn-1 (K|u⊥),
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for u ∈ Sn−1 , its brightness function. Note that

wDK = 2wK .

Any K ∈ Kn is uniquely determined by its support function. Given u ∈ Sn−1, the
support set of K in direction u is

Ku = {x ∈ K : ⟨x, u⟩ = hK(u)}.

The support sets are also called exposed faces of K. Note that [66, Theorem 1.7.5(c)]

(2.1) (DK)u = Ku + (−K)u.

The Blaschke body ∇K of K ∈ Kn
n is the unique o-symmetric convex body such that

b∇K = bK .

We say that a convex body K is in the class Cm, for m ∈ N, if ∂K is an m-
differentiable manifold, and write K ∈ Cm

+ , for m ≥ 2, if K ∈ Cm and the Gauss
curvature of ∂K is positive everywhere. We say that K ∈ C∞

+ if K ∈ Cm
+ for each

m ∈ N. When K ∈ C2
+, νK : ∂K → Sn−1 denotes the Gauss map and τK(u)

denotes the Gauss curvature of ∂K at the point ν−1
K (u) in ∂K with outer normal

u ∈ Sn−1 .
Given a face F of a convex polytope P ⊂ Rn, the normal cone of P at F is

denoted by N(P, F ) and is the set of all outer normal vectors to P at x, where
x ∈ relintF , together with o. The support cone of P at F is the set

cone(P, F ) = {a(y − x) : y ∈ P , a ≥ 0},

where x ∈ relintF . Neither definition depends on the choice of x. Two faces F and
G of P are antipodal if relintN(P, F ) ∩ (− relintN(P,G)) ̸= ∅.

If Y ∈ Mn,

(2.2) Θ(Y, x) = lim
r→0+

Hn
(
Y ∩ (rBn + x)

)
Hn(rBn + x)

,

is the density of Y at x, provided the limit exists. For t ∈ [0, 1], define Y t = {x ∈
Rn : Θ(Y, x) = t}. The essential boundary ∂eY of Y is ∂eY = Rn \ (Y 0 ∪ Y 1). The
perimeter PerY of Y is PerY = Hn−1(∂eY ), while the directional variation Vu(Y )
of Y in the direction u ∈ Sn−1 is

Vu(Y ) =

∫
u⊥

H0
(
∂eY ∩ (lu + x)

)
dHn−1(x),

where lu is the line through o parallel to u. If K ∈ Kn
n, then ∂eK = ∂K, perimeter

coincides with surface area, and Vu(K) = 2bK(u).
The X-ray of Y ∈ Ln in the direction u ∈ Sn−1 is defined for Hn-1 -almost all

x ∈ u⊥ by

XuY (x) = H1
(
Y ∩ (lu + x)

)
.

Given a function f defined on a subset of Rn, supp f , ∇f and D2f denote its
support, its gradient and its Hessian, respectively. We say that f ∈ C∞

0 (Rn) if f is
m-times differentiable for each m ∈ N and supp f is compact.

An entire function is a complex-valued function that is holomorphic over the
whole Cn. An entire function f is of exponential type if there exist a, b ∈ R and
m ∈ Z such that |f(ζ)| ≤ a(1 + |ζ|)meb| Im ζ|, for each ζ ∈ Cn.
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The Fourier transform of a function f ∈ L2(Rn) with compact support is defined
for ζ ∈ Cn as

f̂(ζ) =

∫
Rn

ei⟨x,ζ⟩f(x) dx.

By the Paley–Wiener Theorem, f̂ is an entire function of exponential type whose
restriction to Rn belongs to L2. The version of this theorem for distributions asserts

that f̂ is an entire function of exponential type if and only if f is a distribution
with compact support. See [60, Theorem 7.23]. Distributions will enter this paper
only very marginally and we refer to Rudin [60] for their definition.

Taking Fourier transforms in (1.2) for ζ ∈ Cn gives the relation

(2.3) ĝK(ζ) = 1̂K(ζ) 1̂K
(
ζ
)
.

2.1. Properties of the covariogram. Given X, Y ∈ Mn, the cross covariogram
of X and Y is the function

gX,Y (x) = Hn(X ∩ (Y + x)),

where x ∈ Rn is such that Hn(X ∩ (Y + x)) is finite. Clearly, gX,X = gX .
The translation of X and Y by the same vector, and the substitution of X

with −Y and of Y with −X, leave gX,Y unchanged. Let X ′ and Y ′ be in Mn.
We call (X,Y ) and (X ′, Y ′) trivial associates when one pair is obtained from the
other one via a combination of the two operations above, that is, when either
(X,Y ) = (X ′ + x, Y ′ + x) or (X,Y ) = (−Y ′ + x,−X ′ + x), for some x ∈ Rn.
When dealing with the ordinary covariogram the previous definition simplifies to the
following one: X and X ′ are called trivial associates if X ′ = X +x or X ′ = −X +x
for some x ∈ Rn.

The following propositions list some properties of the covariogram.

Proposition 2.1. Let X ∈ Ln.

a) For all x ∈ Rn, 0 ≤ gX(x) ≤ gX(o) = Hn(X).
b) The function gX is even.
c) We have

∫
Rn gX(x) dx = Hn(X)2.

d) The function gX is uniformly continuous in Rn and lim|x|→∞ gX(x) = 0. More-
over, for all x, y ∈ Rn,

|gX(x)− gX(y)| ≤ gX(o)− gX(x− y).

e) The right directional derivative of gX at o in direction u ∈ Sn−1 can be expressed
as

(2.4)
∂+gX
∂u

(o) = −1

2
Vu(A).

f) The covariogram gX is Lipschitz if and only if X has finite perimeter PerX.
Moreover, the Lipschitz constant of gX equals (1/2) supu∈Sn−1 Vu(X), and

PerX = − 1

ωn−1

∫
Sn−1

∂+gX
∂u

(o) dHn−1(u).

These properties, in the generality of measurable sets, are proved in Galerne [29].
Some of them are immediate, like Items a), b) and c), while others were already
known in the case of convex bodies [52] and of full-dimensional compact UPR sets
[56] (a family of sets that consists of certain unions of sets of positive reach).
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Proposition 2.2. Let K,L ∈ Kn
n and let C,D ∈ Cn be regular.

a) We have supp gC = DC and supp gC,D = C + (−D).

b) The function g
1/n
K,L is concave on its support. In particular, gK is log-concave.

c) The following inequalities hold:

2ngC(o) ≤ Hn(supp gC);(2.5)

Hn(supp gK) ≤
(
2n

n

)
gK(o).(2.6)

Equality in (2.5) holds precisely when C is convex and centrally symmetric, while
equality in (2.6) holds precisely when K is a simplex.

d) If Hn−1(∂K ∩ (∂K + x)) = 0 then ∇gK(x) exists and

(2.7) ∇gK(x) = −
∫
∂K∩(K+x)

ν(y) dHn−1(y),

where ν(y) denotes the unit outer normal vector to y ∈ ∂K, defined Hn−1-almost
everywhere. If u ∈ Sn−1, r > 0 and ru ∈ int supp gK , then

(2.8)
∂gK
∂u

(ru) = −Hn-1
((
K ∩ (K + ru)

)
|u⊥).

Moreover

(2.9)
∂+gK
∂u

(o) = −bK(u).

For arbitrary sets C,D ∈ Ln, Item a) is not valid, even in the case of the ordinary
covariogram. The property x /∈ DC is equivalent to C ∩ (C + x) = ∅ and therefore
the inclusion supp gC ⊂ DC is still valid. However, the other inclusion may be
false. For instance, if C is the Cantor ternary set in [0, 1] then supp gC = ∅ , since
H1(C) = 0, while DC = [−1, 1]. We give a proof of Item a) below, since we could
not find one in the literature valid in the class of regular sets in Cn.

Item b) was first observed by Gardner and Zhang [35] and we give their proof
below. The set

K(δ) = {x ∈ Rn : gK(x) ≥ δ}
is called the convolution body of K. This notion is due to Kiener [43] who noted
that K(δ) is convex, as Item b) implies.

Formulas (2.5) and (2.6), together with their equality cases, are an immediate
consequence, respectively, of the general Brunn–Minkowski inequality [30, p. 362]
and of the Rogers–Shepard inequality [66, p. 530] together with Item a) and fact
that the value of the covariogram at o equals the volume of the set.

Formula (2.9) shows that gK provides the brightness function bK of K. For-
mula (2.8) and the interpretation of the right-hand side of (2.8) as

(2.10) −Hn-1
(
{x ∈ u⊥ : XuK(x) ≥ r}

)
,

proves a connection between the covariogram and the X-rays of a convex body first
observed by Gardner, Gronchi and Zhong [33]: knowing gK is equivalent to knowing
the rearrangement of XuK for each u ∈ Sn−1.

Formulas (2.7) and (2.9) are present in Matheron [51]. Regarding the existence of
∇gK , [51] simply writes that this happens almost everywhere, due to the concavity
property in Item b). The existence of the derivatives in (2.7) and (2.8) is proved by
Meyer, Reisner and Schmuckenschläger [53], who also deal with the second-order
derivatives of gK .
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Proof. a). The property x /∈ C + (−D) is equivalent to C ∩ (D + x) = ∅ and
therefore supp gC,D ⊂ C + (−D). If x ∈ C + (−D), and x = c− d with c ∈ C and
d ∈ D, then c = d+ x ∈ C ∩ (D + x). For any ε > o there exist c′ ∈ B(c, ε) ∩ intC
and d′ ∈ B(d, ε) ∩ intD, due to C and D being regular. If y = c′ − (d′ + x) then
|y| ≤ 2ε and C ∩ (D+ x+ y) has nonempty interior, since it contains c′ = d′ + x+ y.
Therefore gC,D(x+ y) > 0. Thus B(x, 2ε) contains points where gC,D is positive,
which proves C + (−D) ⊂ supp gC,D.

b). For x, y ∈ Rn and a ∈ [0, 1], we have

K ∩
(
L+ (1− a)x+ ay)

)
= K ∩

(
(1− a)(L+ x) + a(L+ y)

)
⊃ (1− a)

(
K ∩ (L+ x)

)
+ a
(
K ∩ (L+ y)

)
.

Using the Brunn–Minkowski inequality we obtain

gK,L((1− a)x+ ay)1/n ≥ Hn
(
(1− a)

(
K ∩ (L+ x)

)
+ a
(
K ∩ (L+ y)

))1/n
≥ (1− a)Hn

(
K ∩ (L+ x)

)1/n
+ aHn

(
K ∩ (L+ y)

)1/n
= (1− a)gK,L(x)

1/n + agK,L(y)
1/n.

□

Remark 2.3. Some formulas in Proposition 2.1 and 2.2 explain the equivalence be-
tween the Covariogram Problem and Problem 1.1. Let Zu be the length of the chord
Lu ∩K, where Lu is a random line parallel to u ∈ Sn−1 conditioned on Lu ∩K ≠ ∅.
Formula (2.8), with the right-hand side interpreted as in (2.10), shows that the
probability of the event {Zu ≥ r}, for r > 0, is equal to − (∂gK/∂u) (ru)/bK(u). In-
tegrating the latter expression with respect to r we determine f(ru) = gK(ru)/bK(u).
Consequently, the distribution of Zu for each u ∈ Sn−1 determines f(ru)/f(0u) =
gK(ru)/Hn(K), for every r > 0 and every u ∈ Sn−1. The latter is equivalent to
the determination of gK(x)/Hn(K) for every x ∈ Rn. Integration of gK/Hn(K)
over Rn yields Hn(K), by Proposition 2.1 c), and we determine gK . Conversely, gK
determines the distribution of Zu, by (2.9).

In the plane, ∇gK has a simple geometric interpretation. Consider an arbitrary
x ∈ int supp gK and assume that ∂K ∩ (∂K + x) consists of two points. Then
there exist points pi(x), i ∈ {1, . . . , 4}, in counterclockwise order on ∂K, such that
x = p1(x)−p2(x) = p4(x)−p3(x); see Figure 1. These points define a parallelogram

(2.11) P (x) = conv{p1(x), . . . , p4(x)}

inscribed in K, whose edges are translates of [o, x] and [o,D(x)], where

D(x) = p1(x)− p4(x).

Proposition 2.4. Let K,L ∈ K2
2 and x ∈ int supp gK\{o} be such that ∂K∩(∂K+x)

consists of two points. Then ∇gK(x) = Rπ
2
D(x).

If gL = gK , then any parallelogram inscribed in K has a translate inscribed in L.

The representation of ∇gK(x) in terms of D(x) was already observed in [51].
The second claim is proved in [14] and is related to the first one. This is easily
understood when K and L are strictly convex. In this case any parallelogram P
inscribed in K coincides with P (x) when x is chosen so that [o, x] is a translate
of an edge of P . The parallelograms P (K,x) and P (L, x) are translates of each
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u1

u2

u3

u4

p1

p2

p3

p4
x

D(x)

Figure 1. P (x) and the vector D(x), a rotation of ∇gK(x).

other, since both have two edges that are translates of [o, x] and two edges that are
translates of D(K,x) = D(L, x), where these vectors coincide due to the first claim.

3. The Covariogram Problem

The focus on covariograms of convex bodies is natural. There exist noncongruent
nonconvex polygons, even (see Figure 7) horizontally and vertically convex ones,
with the same covariogram, indicating that the convexity assumption cannot be
significantly weakened. Sections 5 and 6 contains a discussion of this example and
information on the determination of nonconvex sets (including the case of discrete
sets) by the covariogram (or by its discrete version).

Another preliminary observation is that objects which are centrally symmetric
with respect to some point are easy to determine, up to translations, in the class of
centrally symmetric objects. If K1 and K2 are convex bodies which are centrally
symmetric with respect to a1 and a2, respectively, and gK1

= gK2
, this follows from

the formula

2(K1 − a1) = D(K1 − a1) = supp gK1
= supp gK2

= D(K2 − a2) = 2(K2 − a2).

An analogous result holds in a much larger class. Cabo and Janssen [23] prove
that that if f and h are even functions in L1(Rn) with compact support and with
the same autocorrelation (i.e. f(·) ∗ f(−·) = h(·) ∗ h(−·)), then f = ±h almost
everywhere. Note that the autocorrelation of the characteristic function of a set
is its covariogram. This implies the following result, of which the elegant proof is
taken from [33].

Theorem 3.1 (Cabo and Janssen [23]). A centrally symmetric regular compact
subset C of Rn is determined by gC , up to translations, in the class of centrally
symmetric regular compact sets.

Proof. If D is a centrally symmetric regular compact set with gC = gD, then

(1.3) implies |1̂C |2 = |1̂D|2. Up to translations, we may assume that C and D
are o-symmetric. Fourier transforms of even functions are real valued and the

previous condition becomes (1̂C)
2 = (1̂D)2. Therefore 1̂C = ±1̂D. Since Fourier

transforms of functions with compact supports are analytic and any analytic function
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is determined by its value on a set with a limit point we conclude that 1̂C = ±1̂D.
Fourier inversion yields 1C = 1D almost everywhere and since C and D are regular
we have C = D. □

We remark that here we are not asking whether a symmetric object is determined
in the class of all objects. The answer to this last question is more subtle. It is
known that a centrally symmetric convex body is determined in the class of all
regular compact sets, but the same question is already open for the determination
of a centrally symmetric regular compact set in the class of all regular compact sets.
This will be explained in Section 5.2, when speaking of the possibility of recognizing
the central symmetry of a set from its covariogram.

A great deal of effort has been spent on the determination of convex bodies
from the combined information in their width and brightness functions. Since the
covariogram of a convex body determines both functions, by Proposition 2.2 a) and
(2.9), the question is directly related to the Covariogram Problem. The many known
results do not add to what we know about the latter, but the interested reader can
consult [31, Chapter 3 and Notes 3.3 and 3.6] and the update for [31] available on
its author’s website.

3.1. Complete answer in the plane. The first answer to the Covariogram
Problem in the plane was a positive one for convex polygons proved by Nagel [55] in
1993. Bianchi [14] and Bianchi and Averkov [4] prove the following theorem, which
confirms Matheron’s Conjecture.

Theorem 3.2. Every planar convex body is determined among all planar convex
bodies by its covariogram, up to translations and reflections.

This is the combination of the following two results.

Theorem 3.3 (Bianchi [14]). Let K and L be planar convex bodies with equal
covariograms, one of which is not strictly convex or not in C1. Then K = L, up to
translations and reflections.

Theorem 3.4 (Averkov and Bianchi [4]). Let K and L be planar strictly convex
bodies in C1 with equal covariograms. Then K = L, up to translations and reflections.

In the rest of this section K and L will denote planar convex bodies with gK = gL.
A unified proof of Theorem 3.2 would be very welcome but it is still missing. The

proofs of Theorems 3.3 and 3.4 both rely on two ingredients. One is the following.

Proposition 3.5 (Bianchi [14]). If K and L have a common nondegenerate boundary
arc, then K = L, up to translations and reflections.

The other ingredient is the proof that K and L do have a boundary arc in
common, up to translations and reflections. The proof of Proposition 3.5 is different
according to whether the common arc is strictly convex or not, even though the
structures of the proofs for the two cases are similar. The proofs of the other step
differ very much from Theorem 3.3 to Theorem 3.4, with smaller differences present
even between the different cases handled by Theorem 3.3.

We first present a sketch of the proof of Proposition 3.5 assuming, for simplicity,
that K and L are strictly convex and C1-regular. Under this assumption the proof of
Proposition 3.5 was substantially already present in Bianchi, Segala and Volčič [20],
and the version that we present is taken from there.
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Sketch of the proof of Proposition 3.5. Let E be a maximal (with respect to
inclusion) arc in ∂K ∩∂L. The portion of ∂K antipodal to E is contained in ∂L too.
By this we mean that, if U is the subset of S1 consisting of the vectors u such that

Ku = Lu ⊂ E,

then, for each u ∈ U ,
K−u = L−u.

This comes from DK = supp gK = supp gL = DL and (2.1). Thus ∂K ∩ ∂L also
contains the boundary arc F = {K−u : u ∈ U} antipodal to E. The arc F is
maximal too.

The crucial point in the proof of Proposition 3.5 is the next lemma. We shall
only give its proof, though further work is required to prove Proposition 3.5.

Lemma 3.6. The arcs E and F are reflections of each other.

Proof. Suppose, on the contrary, that E and F are not reflections of each other. We
aim to obtain a contradiction by showing that E (and hence F ) is not maximal, i.e.
that ∂K ∩ ∂L contains an arc strictly larger than E. It follows from the discussion
above that K and L have the same tangents at the endpoints of E and F , and that
these tangents are pairwise parallel. Moreover, U has length less than π and thus E
can be represented as the graph of a convex function.

We need a definition. Suppose that X and Y are arcs of ∂K corresponding to
opposite arcs V and −V of S1. Let z be one of the endpoints of Y . We denote by
Ȳ the convex curve formed by Y and the appropriate half of the tangent to Y at z.
We say that the point z can be captured by the arc X, if an appropriate translation
of X intersects Ȳ in two points determining an arc of Ȳ containing z in its relative
interior.

Claim 1. Let E and F be disjoint arcs in the boundary of a planar strictly convex
body K corresponding to U ⊂ S1 and −U ⊂ S1, respectively, which are not reflections
of each other. Then one arc has an endpoint which can be captured by the other.

To see this, let u denote an endpoint of U . The point Ku is an endpoint of
E and K−u is an endpoint of F . Changing, if necessary, the coordinate system,
we may assume that Ku = (0, 0), that u = (0,−1) and that locally the arc E is
represented by the graph of a convex function defined in a right neighborhood of

0. Let F̃ = −(F +Ku −K−u). Then F̃ is tangent to E at Ku. Either F̃ ⊂ E, or

E ⊂ F̃ or there is a point (x, y) on one arc such that the other contains a point

(x′, y), with x′ > x. The first two alternatives are impossible, since E and F̃ are

strictly convex arcs with the same set of outer normals, so if F̃ ⊂ E or E ⊂ F̃ , then

E = F̃ , contradicting our assumption.

We may assume that (x, y) ∈ E. Then the map z → −z + (x, y) takes F̃ to a
translate of F with one endpoint at (x, y) and with a point (the image of (x′, y)) on
the negative x−axis. The origin is thus an endpoint of E which is captured by F .
This proves Claim 1.

By Claim 1, we may assume that there is an endpoint z of E which can be
captured by F via a translation by a vector p. As in the proof of Claim 1, we may
assume that z is the origin, and that the arc E is represented by the graph of a
convex function g defined in a right neighborhood of 0, and we may also assume
that g(0) = 0 and g′(0) is finite. It is possible to extend the definition of g to a left
neighborhood of 0 so that it represents a portion of ∂K adjacent to E. Let f be the
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concave function whose graph is F + p. The arc F + p intersects E in a point (b, c)
with b > 0 and moreover, possibly by changing the translation, we may assume that
F + p also intersects the graph of g in a point with a negative abscissa a.

If we show that the covariogram determines the boundary of K ∩ (K + p), we
are done, since this means that the arc E is not maximal in ∂K ∩ ∂L.

The covariogram gives the area of K ∩ (K + p − (0, t)) for every t > 0. If we
denote by [at, bt] the interval where f(x)− t ≥ g(x), then

gK(p− (0, t)) =

∫ 0

at

(f(x)− t− g(x)) dx+

∫ bt

0

(f(x)− t− g(x)) dx.

The latter integral is known for any t ∈ [0, f(0)], since by assumption, f and g are
known on [0, b]. Therefore we can deduce from the covariogram the value of∫ 0

at

(f(x)− t− g(x)) dx,

for any t ∈ [0, f(0)]. By assumption, f is known on [a, 0]. We now claim that this
information is sufficient to determine g on [a, 0].

Claim 2. Suppose that f is a continuous strictly increasing function on [a, 0], with
f(0) > 0. If g is continuous and strictly decreasing on [a, 0] such that g(a) > f(a)
and g(0) = 0, then g is determined in a left neighborhood of 0 by the areas

(3.1) At = H2 ({(x, y) : x ∈ [a, 0], g(x) ≤ y ≤ f(x)− t}) ,
for 0 ≤ t ≤ f(0).

Indeed, let at be the point where g(at) = f(at)− t. Then a0 < 0. The function
h(t) = at is continuous since h is the inverse of the increasing and continuous
function f − g restricted to [a0, 0]. An elementary calculation shows that for every
δ > 0,

δat+δ ≤ A(t)−A(t+ δ) ≤ δat.

It follows that (A(t)−A(t+ δ))/δ → at = h(t), as δ → 0, because h is continuous.
We see from this that h is determined on its natural domain [0, f(0)], and so

therefore is its inverse f − g, defined on [a0, 0]. But f is determined by assumption,
so g is determined on [a0, 0]. This proves Claim 2 and hence Lemma 3.6. □

Determination of an arc of the boundary. We will describe this step in two
cases, that of convex bodies in C2

+, where it is particularly simple, and that of
strictly convex C1-regular bodies, historically the last case to be solved.

Determination of an arc of the boundary: convex bodies in C2
+. We recall that,

for u ∈ S1, τK(u) denotes the Gauss curvature of ∂K at the point Ku with outer
normal u.

Proposition 3.7 (Bianchi, Segala and Volčič [20]). If the planar convex body K is
in C2

+, then gK determines the nonordered pair {τK(u), τK(−u)}, for u ∈ S1.

The analogous result is valid also for C2
+ convex bodies in Rn [18, Proposition

3.1].
In the planar case the information about the couple above is contained in the

asymptotic behaviour of gK near the point p = (supp gK)u. Since supp gK = DK,
p = Ku − K−u, by (2.1). Studying the behavior of gK near p is equivalent to
studying the behavior of the area of K ∩ (K + x) for x such that K ∩ (K + x) is
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contained in a small neighborhood of Ku. For these x, the boundary of K ∩ (K + x)
consists of a portion of ∂K near Ku and a translation of a portion of ∂K near K−u.
The next formula expresses this area in terms of the curvatures and gives a proof of
Proposition 3.7. Choose a reference system so that u = (0, 1) and let p = (p1, p2).
For brevity, let a = τK(u) and b = τK(−u). Then, for (x1, x2) in a neighborhood of
o such that (p1 + x1, p2 + x2) ∈ supp gK ,

gK(p1 + x1, p2 + x2) =
2

3

(
− 2(a+ b)x2 − abx2

1

) 3
2

(a+ b)2
(
1 + o(|(x1, x2)|)

)
.

An alternative proof of Proposition 3.7, valid under the stronger assumption K ∈ C4
+,

derives from (1.3) and the study of the asymptotic behaviour at infinity of 1̂K by
Haviland and Wintner [39]. The result in [39] yields the following asymptotic
expansion, as |t| → ∞, for ĝK :

ĝK(tu) =
2π

t3

(
1

a
+

1

b
− 2√

ab
sin(|t|wK(u)) + O

(
1√
|t|

))
.

It remains to prove that Proposition 3.7 implies the conclusion of this step. Assume
both K and L are C2

+-regular.
If K is centrally symmetric the curvatures at antipodal points are equal and

Proposition 3.7 implies τK(u) = τL(u), for each u. The curvature determines the
point Ku = (x(u), y(u)) of ∂K via the parametric representation (see for instance
[28, p. 79])

(3.2) x(u) = x(v)+

∫ θ(u)

θ(v)

− sin t

τK(cos t, sin t)
dt, y(u) = y(v)+

∫ θ(u)

θ(v)

cos t

τK(cos t, sin t)
dt,

where θ(u) denotes the angular coordinate of u ∈ S1. If v ∈ S1 is fixed and L is
translated so that Kv = Lv, then K = L follows from (3.2).

If K is not centrally symmetric, the continuity of the curvature implies that
given any component U of {u ∈ S1 : τK(u) ̸= τK(−u)}, we have, possibly after a
reflection of L,

τK(u) = τL(u), for each u ∈ U .

If v ∈ U is fixed and L is translated so that Kv = Lv, then (3.2) implies that
Ku = Lu, for u ∈ U .

Determination of an arc of the boundary: strictly convex C1-regular bodies. We
recall some notation introduced at the end of Section 2. For x ∈ int supp gK \ {o},
let pi(x), i ∈ {1, . . . , 4}, be points in counterclockwise order on ∂K such that
x = p1(x)− p2(x) = p4(x)− p3(x); see Figure 1. Let ui(x) be the unit outer normal
vector to ∂K at pi(x), and let P (x) be the parallelogram conv{p1(x), . . . , p4(x)}.
The crucial point is that the outer normals of K are determined by gK , up to the
ambiguities arising from reflections of the body.

Proposition 3.8 (Averkov and Bianchi [4]). Let K be a strictly convex C1-
regular body. Then, for every x ∈ int supp gK \ {o} with detG(x) ̸= −1, the
set {u1(x),−u3(x)} is determined by gK .

Here

G(x) = G(K,x) =

(
∂2gK
∂xi∂xj

(x)

)



14 1

is the Hessian matrix of gK at x. The existence of the second-order derivatives at
x ∈ int supp gK \ {o} is proved for strictly convex C1-regular bodies in Rn in [53,
Theorem 2.5], while the planar case was already treated in [52, pp. 12-18]. The
Hessian G(x) contains information about the vectors u1(x), . . . , u4(x), as expressed
in the next proposition. For x, y ∈ R2, denote by det(x, y) the determinant of the
matrix whose first column is x and the second is y.

The next goal is to outline the proof of Proposition 3.8, based on the following
two lemmas.

Lemma 3.9. Let K be a planar strictly convex C1-regular body. Then gK(x) is
twice continuously differentiable at every x ∈ int supp gK \ {o}. Furthermore, for
every x ∈ int supp gK \ {o}, the following statements hold.

a) The Hessian G(x) is given by

G(x) =
u2u

⊤
1

det(u2, u1)
− u3u

⊤
4

det(u3, u4)
=

u1u
⊤
2

det(u2, u1)
− u4u

⊤
3

det(u3, u4)
.

b) The determinant of G(x) depends continuously on x and satisfies

(3.3) 1 + detG =
det(u2, u4) det(u1, u3)

det(u3, u4) det(u1, u2)
.

c) The vectors u1, u3 and G(x) are related by

(3.4) u⊤
1 G(x)−1u3 = 0.

One can tell from G(x) whether K is centrally symmetric. We say that a chord
of K is an affine diameter if the normal vectors at ∂K at the endpoints of the chord
are parallel.

Lemma 3.10. Let K be a planar strictly convex C1-regular body. The following
are equivalent.

a) K is centrally symmetric.
b) At least one diagonal of each parallelogram inscribed in K is an affine diameter

of K.
c) The covariogram gK is a solution of the Monge–Ampère differential equation

detG(x) = −1, for x ∈ int supp gK \ {o}.

If one diagonal of the parallelogram P (x) is an affine diameter, then u1 is parallel
to u3 or u2 is parallel to u4 and (3.3) implies that detG(x) = −1.

We are now ready to sketch the proof of Proposition 3.8. Due to the assumptions
of Proposition 3.8 and (3.3) we have u1(x) ̸= −u3(x). We prove that there is a y ̸= x
such that the parallelograms P (x) and P (y) satisfy p1(x) = p1(y) and p3(x) = p3(y).
This clearly implies that u1(x) = u1(y) and u3(x) = u3(y). Thus, u1(x) and u3(x)
satisfy the system given by the two equations obtained by evaluating (3.4) at both
x and y. [4, Lemma 5.3] expresses the vectors u1(x) and u3(x) in terms of the
eigenvectors of G(x)G(y)−1. In order to make this expression of u1(x) and u3(x)
dependent only on the covariogram, it remains to prove that the property that
P (x) and P (y) have a diagonal in common is shared by convex bodies with equal
covariograms. The latter is done in [4, Proposition 5.4].

We now sketch how Proposition 3.8 is used to prove that if K and L are strictly
convex C1-regular bodies with gK = gL, then ∂K and ∂L have an arc in common, up
to translations and reflections. Choose x0 ∈ int supp gK \ {o} such that detG(x0) ̸=
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−1. We claim that if x belongs to a suitable neighborhood U of x0, and if p3(K,x) =
p3(K,x0), then p3(L, x) = p3(L, x0). Indeed, Proposition 3.8 together with a
continuity argument allows us to prove that when x is close to x0 and u3(K,x) =
u3(K,x0), we have u3(L, x) = u3(L, x0). In view of the strict convexity of K and L,
this proves the claim.

Now let x(t), for t ∈ [0, 1], be a parametrization of a curve contained in U with
the property that, for each t ∈ [0, 1], the parallelograms P (K,x0) and P (K,x(t))
are such that p3(K,x0) = p3(K,x(t)). The previous claim implies that the arc of
∂K formed by the locus of p4(K,x(t)), as t varies in [0, 1], is a translate of the arc
of ∂L formed by the locus of p4(L, x(t)). Therefore, up to translations, ∂K and ∂L
have an arc in common.

3.2. Counterexamples in Rn for any n ≥ 4. We explain in Section 6 that the
Covariogram Problem has a discrete counterpart which asks whether a finite set
A ⊂ Rn is determined by its discrete covariogram (see (6.1) for the definition), and
that there exists a construction that produces different sets (possibly multisets, sets
with repetitions allowed) with equal discrete covariograms. If B,C ⊂ Rn are finite
sets, then the multisets B + C and B + (−C) have the same discrete covariogram.
When one tries to construct counterexamples to Matheron’s Conjecture via a similar
procedure one immediately encounters two problems: the requirement that the
corresponding Minkowski sums are sets, not multisets, and the requirement that
they are convex. Choosing convex bodies in linear subspaces that intersect only in
o solves both of these problems.

Theorem 3.11 (Bianchi [14]). Let Rn = E ⊕ F be the direct sum of the linear
subspaces E and F , and let H ⊂ E and K ⊂ F be convex bodies. Then the convex
bodies H +K and H + (−K) in Rn have the same covariogram.

If neither H nor K are centrally symmetric, then H +K and H + (−K) are not
equal up to translations and reflections.

Proof. The property of having equal covariograms is invariant under linear maps,
and the same is true for the property of being equal up to translations and reflections,
since

gLK(x) = (detL) gK(L−1x) and

LK = L(±L) + y ⇐⇒ K = ±L+ L−1y,

for any invertible linear map L, x, y ∈ Rn and K,L ∈ Kn. We may therefore assume
that E and F are orthogonal subspaces.

In this case, if we write x = (x1, x2) ∈ E⊕F and if dimE = n1, dimF = n2 and
H ⊂ E and K ⊂ F are convex bodies, then

(3.5)

gH+K(x1, x2) =Hn ((H +K) ∩ ((H +K) + (x1, x2))

=Hn ((H ∩ (H + x1)) + (K ∩ (K + x2)))

=Hn1
(
H ∩ (H + x1)

)
Hn2

(
K ∩ (K + x2)

)
=gH(x1) gK(x2).

A similar formula holds for H + (−K) and the invariance of the covariogram with
respect to reflections implies that gH+K = gH+(−K).

To prove the second claim, suppose on the contrary that

(3.6) H +K = H + (−K) + y or H +K = − (H + (−K)) + y,
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for some y ∈ Rn. We may assume that both H and K have centroid at the origin,
since translations of H and K result in translations of H + K and H + (−K).
Since the centroids of H + K and H + (−K) are at the origin, we have y = 0.
Then by the cancellation law for Minkowski addition [66, p. 48], the first equality
in (3.6) implies that K = −K, that is, K is centrally symmetric, a contradiction.
Similarly, the second equality in (3.6) implies that H is centrally symmetric, again
a contradiction. □

Convex sets which are not centrally symmetric exist when the dimension of the
ambient space is at least two, yielding the following corollary.

Corollary 3.12 (Bianchi [14]). If n ≥ 4 there exist convex bodies in Kn
n with the

same covariogram which are not equal up to translations and reflections.

This example is better understood if seen in the context of the decomposition of
a convex body into direct summands. For K ∈ Kn

n, we write

(3.7) K = K1 ⊕ · · · ⊕Ks

if K = K1 + · · ·+Ks for suitable convex bodies Ki lying in linear subspaces Ei of
Rn such that E1 ⊕ · · · ⊕Es = Rn. If a representation K = L⊕M is only possible
when dimL = 0 or dimM = 0, then K is directly indecomposable. Each K with
dimK ≥ 1 has a representation, unique up to the order of the summands, as in
(3.7), with dimKi ≥ 1 and Ki directly indecomposable.

If at least two of the summands of K, say K1 and K2, are not centrally symmetric,
then (−K1)⊕K2 ⊕ · · · ⊕Ks has the same covariogram as K and is not equal to K
up to translations and reflections. Two questions arise naturally.

a) If H ∈ Kn
n and gH = gK , does H have a similar structure to K?

b) If each directly indecomposable summand Ki is determined, up to translations
and reflections, among the convex bodies in Ei by gKi , considered as a function
defined in Ei, can the structure of H be understood?

The next theorem gives a positive answer to these questions.

Theorem 3.13 (Bianchi [15]). Let K ∈ Kn
n and let Ei and Ki, i = 1, . . . , n, be as

in (3.7). If H ∈ Kn
n and gH = gK , then H = H1 ⊕ · · · ⊕Hs, where, for each i, Hi

is a directly indecomposable convex body contained in Ei and gHi = gKi .
If in addition for each i, gKi : Ei → R determines Ki among the convex bodies in

Ei, up to translations and reflections, then H is a translation of σ1K1 ⊕ · · · ⊕ σsKs,
for suitable σ1, . . . , σs ∈ {−1, 1}.

In view of this, to understand the Covariogram Problem for general convex bodies
it suffices to study it for indecomposable bodies. This last problem is however
widely open, and the examples of nondetermination described above are the only
ones known.

For the proof of Theorem 3.13 we refer to [15]. Briefly, the first claim follows from
the uniqueness of the decomposition into direct summands, the equality DH = DK
and a lemma that proves that a convex body is directly indecomposable if and
only if its difference body is directly indecomposable. The second claim is a direct
consequence of the first and the fact that the covariogram can be written in terms
of the covariograms of the direct summands, with a formula similar to (3.5).

Before we conclude this section we prove, for later use, that if E, F , H and
K are as in the statement of Theorem 3.11, then H + K is not in the class C1.
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This property is invariant under linear maps and we may therefore assume that
E and F are orthogonal subspaces. For x in the boundary of H relative to E, let
NE(H,x) (or N(H,x)) be the normal cone of H at x relative to E (or relative to Rn,
respectively). For y in the boundary of K relative to F , let NF (K, y) and N(K, y)
be defined in the analogous way. Schneider [66, (2.4) and Theorem 2.2.1(a)] proves
that

N(H +K,x+ y) = N(H,x) ∩N(K, y)

= (NE(H,x) + F ) ∩ (E +NF (K, y)) = NE(H,x) +NF (K, y).

This implies that the dimension of N(H+K,x+y) is larger than 1. Thus, ∂(H+K)
is not C1 regular at x+ y.

3.3. Polytopes in Rn, n ≥ 3. In dimensions higher than two the Covariogram
Problem has only partial results. The situation is better understood in the case of
polytopes.

Theorem 3.14 (Goodey, Schneider and Weil [38]). If P ∈ Kn
n, n ≥ 3, is a polytope

such that P and −P are in general relative position and all its two-dimensional
faces are triangles then P is determined by gP , up to translations and reflections,
in the class Kn

n.

The polytopes P and −P are said to be in general relative position if for any
two faces F and G of P lying in antipodal parallel supporting hyperplanes of P ,
F ∩ (G+ x) contains at most one point, for any x ∈ Rn. In R3, for instance, this
means that P does not have pairs of parallel antipodal facets, or pairs of parallel
antipodal edges, or an edge antipodal and parallel to a facet.

The proof of Theorem 3.14 is based on the Brunn–Minkowski inequality, together
with its equality cases, and on a result about the decomposition of convex bodies in
terms of sums of other convex bodies. Schneider [65] proves that the assumptions
on P imply that every summand of DP is of the form aP + (1− a)(−P ) + x with
a ∈ [0, 1] and x ∈ Rn. If K ∈ Kn satisfies gK = gP , then Hn(K) = Hn(P ) and
DK = DP , by Propositions 2.1 a) and 2.2 a). The formula K+(−K) = DK = DP
says that K is a summand of DP and therefore

K = aP + (1− a)(−P ) + x.

If a = 0 or a = 1, then K = −P + x or K = P + x, and we are done. If a ∈ (0, 1),
then

Hn(K)1/n =Hn(aP + (1− a)(−P ) + x)1/n = Hn(aP + (1− a)(−P ))1/n

≥aHn(P )1/n + (1− a)Hn(−P )1/n

=Hn(P )1/n = Hn(K)1/n.

Thus the Brunn-Minkowski inequality holds with equality and this implies that P
and −P are homothetic, i.e. P is centrally symmetric with respect to some point.
Therefore K = aP + (1− a)(−P ) + x is a translate of P .

Theorem 3.15 (Bianchi [15]). Let P ∈ K3
3 be a polytope. Then gP determines P ,

in the class K3
3, up to translations and reflections.

The proof of Theorem 3.15 is described in Section 3.4.
Theorem 3.11, when H and K are convex polytopes, has the following corollary.
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Corollary 3.16. For each n ≥ 4, there exist pairs of polytopes in Kn
n with the same

covariogram which are not equal up to translations and reflections.

3.4. Some problems and ideas from the proof of Theorem 3.15. The proof
of Theorem 3.15 is done in three steps and is contained in [15], [16] and [17]. We
first briefly describe all three steps and then each step in more detail. Let P and P ′

be convex polytopes in R3 with nonempty interior such that gP = gP ′ .
The first step consists in proving that ∂P and ∂P ′ coincide locally up to transla-

tions and reflections. What this means is expressed by the next proposition.

Proposition 3.17. Let P and P ′ be convex polytopes in R3 with nonempty interior
such that gP = gP ′ . If w ∈ S2, then there exists σ = σ(w) ∈ {−1, 1} and x = x(σ) ∈
R3 such that

(3.8)
Pw = (σP ′)w + x and cone(P, Pw) = cone(σP ′, (σP ′)w);

P−w = (σP ′)−w + x and cone(P, P−w) = cone(σP ′, (σP ′)−w).

We recall that Pw is the face of P with outer normal w and that cone(P, Pw) is
the support cone of P at Pw. Condition (3.8) implies that, for each proper face of
P , be it a facet, an edge or a vertex, after possibly a reflection and a translation, P
and P ′ coincide in a neighborhood of that face and of the antipodal one.

One may wonder if the validity, for each w, of the local conditions (3.8) is sufficient
to guarantee that P ′ = P , up to translations and reflections, but this is not the case,
as Example 3.23 below shows. It can be proved that when (3.8) holds with σ = 1
(or with σ = −1) for each w ∈ S2 then P ′ (or −P ′, respectively) is a translate of P .
A priori, however, (3.8) may hold with σ = 1 for some w, with σ = −1 for some w,
and, possibly, both with σ = 1 and with σ = −1 for other w.

The set int
(
∂P ∩ ∂(σ(w)P ′ + x(σ))

)
(in this section the terms boundary, interior

and neighborhood of a subset of ∂P refer to the relative topology induced on ∂P by
the Euclidean topology in R3) may have multiple components which depend on w.
The second step of the proof consists in a study of these components and of their
boundaries that leads to a choice of w such that the corresponding components
satisfy certain convenient properties.

In the third step we use the setting prepared in the second step to conclude the
proof by contradiction, by identifying some y ∈ R3 such that gP (y) ̸= gP ′(y).

First step. In order to prove Proposition 3.17 we investigate two related problems.
The first problem helps in proving the equalities in the first column in (3.8). In this
paper we explain only how to prove them when both Pw and P−w are facets.

Assume that Pw and P−w are facets, and let F = Pw|w⊥ and G = P−w|w⊥. We
consider P ∩ (P + x) for x such that P ∩ (P + x) ̸= ∅ and the plane aff P−w + x
has a small distance, say ε, from the plane aff Pw. In this situation, P ∩ (P + x)
is approximately equal to a parallelepiped, with height ε and base a translate of
F ∩ (G+ y), where y = x|w⊥. Thus

H3(P ∩ (P + x)) = εH2
(
F ∩ (G+ y)

)
+ o(ε) = εgF,G(y) + o(ε).

This formula proves that gP determines the cross covariogram gF,G(y), for each
y ∈ w⊥. We thus encounter a first problem.

Problem 3.18 (Cross Covariogram Problem for polygons). Does the cross covariogram
of the convex polygons F , G ⊂ R2 determine the pair (F,G), among all pairs of
convex polygons, up to trivial associates?
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A detailed description of its solution is presented in Section 3.6. Here we just
anticipate that, for each choice of some real parameters, there exist four different pairs
of parallelograms (H1,K1), . . . , (H4,K4) such that, for i = 1, 3, gHi,Ki = gHi+1,Ki+1 ,
but (Hi,Ki) is not a trivial associate of (Hi+1,Ki+1), and that, up to an affine
transformations, the previous counterexamples are the only ones.

Thus, gF,G alone is not sufficient to determine F and G, and we have to get from
gP other information that eliminates the ambiguities due to the presence of these
pairs of parallelograms. Rufibach [61, p. 14] was the first to observe the possibility
of determining gF + gG from gP . His idea led to the next proposition.

Proposition 3.19. Let P ⊂ Rn be a convex polytope with nonempty interior, let
w ∈ Sn−1, F = Pw|w⊥ and G = P−w|w⊥. The covariogram gP determines both
(gF + gG)(y) and gF,G(y), for each y ∈ w⊥.

[15] presents a proof of Proposition 3.19 based on the expression of the second-
order distributional derivative of gP given in the next lemma.

Lemma 3.20. Let P ⊂ Rn, n ≥ 2, be a convex polytope with nonempty interior.
Let F1, . . . , Fm be its facets, νi be the unit outer normal of P at Fi, for i =
1, . . . ,m, let w ∈ Sn−1 and let Ip = {(i, j) : Fi is parallel to Fj} and Inp = {(i, j) :
Fi is not parallel to Fj}. Then, for ϕ ∈ C∞

0 (Rn), we have

(3.9) − ∂2gP
∂w2

(ϕ) =
∑

(i,j)∈Inp

⟨w, νi⟩⟨w, νj⟩√
1− ⟨νi, νj⟩2

∫
Rn

Hn-2 (Fi ∩ (Fj + z))ϕ(z) dz

+
∑

(i,j)∈Ip

⟨w, νi⟩⟨w, νj⟩
∫
Fi+(−Fj)

Hn-1 (Fi ∩ (Fj + z))ϕ(z) dHn-1 (z).

Both terms on the right-hand side of (3.9) are determined by gP .

Proof of Proposition 3.19. The distribution defined by the second term on the right-
hand side in (3.9) determines its support

S(P,w) =
⋃

{Fi + (−Fj) : (i, j) ∈ Ip, ⟨νi, w⟩ ≠ 0}

and, for Hn-1 -almost each x ∈ S(P,w), the expression

(3.10)
∑

(i,j)∈Ip

⟨w, νi⟩⟨w, νj⟩ Hn-1 (Fi ∩ (Fj + x)).

The set S(P,w) is contained in DP , and consists of differences Fi+(−Fj) of distinct
parallel facets and of differences Fi + (−Fi), with i such that ⟨νi, w⟩ ≠ 0. The
difference Fi + (−Fj) is the facet (DP )νi of DP . The difference Fi + (−Fi) is
contained in ν⊥i .

Given w ∈ S2, this information tells us whether P has zero, one or two facets
orthogonal to w. The polytope P has at least one facet orthogonal to w if and
only if (DP )w is a facet of DP . It has two facets orthogonal to w if and only if
(DP )w is a facet of DP and (DP )w ⊂ S(P,w). If it has two facets, then the part
of the distribution supported in w⊥ determines gF + gG while the part supported
in (DP )w determines gF,G. If P has only one facet orthogonal to w and this facet
is Pw, say, then the same holds, with the difference that now gF + gG = gF and
gF,G = 0. If P has no facet orthogonal to w, then gF + gG = 0 and gF,G = 0. □

The next result decouples the information given by Proposition 3.19.
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Lemma 3.21. Let F , F ′, G and G′ be convex bodies in Rn. If

(3.11)

{
gF + gG = gF ′ + gG′ ,

gF,G = gF ′,G′

then either gF = gF ′ and gG = gG′ , or else gF = gG′ and gG = gF ′ .

Proof. Applying the Fourier transform to the equalities in (3.11) we arrive, with
the help of (1.3), to the system{

|1̂F |2 + |1̂G|2 = |1̂F ′ |2 + |1̂G′ |2

|1̂F |2|1̂G|2 = |1̂F ′ |2|1̂G′ |2.

For each ξ ∈ Rn, the previous system implies that either we have |1̂F (ξ)| = |1̂F ′(ξ)|
and |1̂G(ξ)| = |1̂G′(ξ)| or else we have |1̂F (ξ)| = |1̂G′(ξ)| and |1̂G(ξ)| = |1̂F ′(ξ)|.
A priori, the alternative may depend on ξ. The Fourier transform of a function
with compact support is analytic and therefore the squared moduli of the previous
transforms are analytic. Since any analytic function is determined by its values on
a set with a limit point, we conclude that the previous alternative does not depend
on ξ. Going back to covariograms via Fourier inversion, this means that either
gF = gF ′ and gG = gG′ , or else gF = gG′ and gG = gF ′ . □

We are now ready to prove the equalities in the first column of (3.8) when
both Pw and P−w are facets. Let F and G be as above, and let F ′ = P ′

w|w⊥

and G′ = P ′
−w|w⊥. The faces P ′

w and P ′
−w are facets too, because otherwise

gF ′,G′ ≡ 0 ̸= gF,G. If (F,G) and (F ′, G′) are trivial associates, then, up to a
reflection and/or translation of P ′, the equalities in the first column of (3.8) hold .

Now assume that (F,G) and (F ′, G′) are not trivial associates. Theorem 3.30
states that (F,G) and (F ′, G′) are, respectively, trivial associates of (T Hi, T Ki)
and (T Hj , T Kj), for some affine transformation T and different indices i, j, with
either i, j ∈ {1, 2} or i, j ∈ {3, 4}.

Proposition 3.19 implies gT Hi
+gT Ki

= gT Hj
+gT Kj

. Lemma 3.21 and the positive
answer to the Covariogram Problem in the plane imply that, up to translations and
reflections, either Hi = Hj and Ki = Kj , or else Hi = Kj and Ki = Hj . In view of
the definition of these sets (see Figure 2) this is false.

It remains to prove the formulas in (3.8) regarding the support cones. For this
purpose, P. Mani-Levitska, in a message to the author, suggested studying the
following problem.

Problem 3.22 (Cross Covariogram Problem for polyhedral cones). Let A and B be
convex polyhedral cones in Rn, n ≥ 2, with apex o and A ∩ B = {o}. Does the
cross covariogram of A and B determine the pair (A,B), among all pairs of convex
polyhedral cones, up to trivial associates?

To see the relevance of this problem, suppose that Pw and P−w are vertices and
x ∈ R3 is chosen so that P−w + x is close to Pw. Then

P ∩ (P + x) = A ∩ (B + y),

where A = cone(P, Pw), B = cone(P, P−w) and y = P−w − Pw + x. Thus, gP
determines gA,B(y) for each y in a neighborhood of o (and also for each y ∈ R3,
since gA,B is 3-homogeneous). If we were able to determine A and B from gA,B , we
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would be able to determine cone(P, Pw) and cone(P, P−w) from gP , at least when
Pw and P−w are vertices.

A partial answer to Problem 3.22 in R3, which is sufficient for the purpose
of proving Theorem 3.15, is given in Bianchi [18, Proposition 5.1]. Bianchi [16,
Theorem 1.3] completely solves the problem in the plane, also describing some
situations of nondetermination.

Second step. The next example show how to construct polytopes P and P ′

which satisfy (3.8) for every w ∈ S2 and such that P ≠ P ′, up to translations and
reflections.

Example 3.23. Let P ⊂ R3 be a convex polytope such that Γ∪ (−Γ) ⊂ ∂P , where Γ
is a simple closed curve such that Γ∩ (−Γ) = ∅. The union Γ∪ (−Γ) disconnects ∂P
into three components Σj , j = 1, 2, 3. Let ∂Σ1 = Γ, ∂Σ2 = −Γ and ∂Σ3 = Γ ∪ −Γ.
Choose P in such a way that Σ1 ̸= −Σ2, Σ3 ̸= −Σ3, and there exists a neighborhood
W of Γ in ∂P which contains all faces of P intersecting Γ and −W contains all faces
of P intersecting −Γ.

Define P ′ as the polytope whose boundary is Σ1 ∪ Σ2 ∪ (−Σ3). The polytope P
can be chosen so that P ′ ̸= P , up to translations and reflections. We claim that
(3.8) holds for each w. Indeed, if w is such that Pw ∩Γ ̸= ∅, then Pw ⊂ W and (3.8)
holds both with σ = −1 and x = o and with σ = 1 and x = o. If Pw ∩ (−Γ) ̸= ∅,
then the same holds. If Pw ⊂ (intΣ1) ∪ (intΣ2), then (3.8) holds with σ = 1 and
x = o. If Pw ⊂ intΣ3, then (3.8) holds with σ = −1 and x = o.

The construction above can be iterated and made more complex, by considering
other pairs of curves in ∂P which are reflections of each other, possibly with respect
to a point different from o, not intersecting Γ and −Γ, and substituting one of the
components of ∂P less all these curves with its reflection.

In the second step we study the components of

(3.12) int
(
∂P ∩ ∂

(
σ(w)P ′ + x(σ)

))
and their boundaries when w varies in S2. When P and P ′ are as in Example 3.23
and w is such that Pw ⊂ Σ1, the set in (3.12) is int

(
∂P ∩ ∂P ′). This set has a

component Σ+ containing Σ1 and a different “antipodal” component Σ− containing
Σ2 (we assume here that P has been chosen so that Σ+ ̸= Σ−). They satisfy

Σ+ ̸= −Σ− and ∂Σ+ = −∂Σ−.

The first formula holds because Σ1 ̸= −Σ2, and the second one holds because both
boundaries are contained in Σ3 ∩ (−Σ3), which is o-symmetric.

If we leave Example 3.23 and pass to the general case, there may exist w such
that, if one defines Σ+ and Σ− as the components of the set in (3.12) containing
Pw and P−w, respectively, then ∂Σ+ is not a reflection, with respect to some point,
of ∂Σ−. This can be seen if one modifies Example 3.23 as follows. Assume that ∂P
contains, besides Γ and −Γ, a closed simple curve Λ and its reflection −Λ+ 2z with
respect to z ̸= o, with Λ ⊂ int Σ1 and −Λ+ 2z ⊂ int Σ2. In this case one can define
P ′ starting from P , and not only substituting Σ3 with −Σ3, but also exchanging
the component Σ4 of Σ1 \ Λ bounded by Λ with the reflection with respect to z of
the component of Σ2 \ (−Λ + 2z) bounded by −Λ + 2z. If Pw ⊂ Σ1 \ Σ4, then it is
not true that ∂Σ+ is a reflection, with respect to some point, of ∂Σ−. Indeed, in
this case ∂Σ+ has two components, and to obtain the two components of ∂Σ− one
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has to reflect one component of ∂Σ+ with respect to o and the other component of
∂Σ+ with respect to z.

The second step in the proof consists in proving in the general case that if P ̸= P ′,
up to translations and reflections, then it is always possible to choose w ∈ S2 so
that there exist z ∈ R3 and two antipodal components Σ+ ⊃ Pw and Σ− of the set
in (3.12) such that

(3.13) Σ+ ̸= −Σ− + 2z and ∂Σ+ = ∂(−Σ− + 2z).

Third step. In this step we use the structure discovered in Step 2 to conclude and
prove that, if P ̸= P ′, up to translations and reflections, then we can find y ∈ R3

such that gP (y) ̸= gP ′(y). For the details we refer to [15, p. 1804].

3.5. Smooth convex bodies in Rn, n ≥ 3. In this section we deal with convex
bodies that are at least C2

+-regular. Every such body is directly indecomposable (we
have proved at the end of Section 3.2 that the direct sum of two lower dimensional
convex bodies is not C1-regular) and we do not have to worry about the examples
in Section 3.2.

The Covariogram Problem for C2
+ bodies is still open, even in R3, and the only

results available are positive ones for bodies with higher regularity. To prove these
results it has been useful to connect the Covariogram Problem to some studies

regarding the zero set Z(K) = {ζ ∈ Cn : 1̂K(ζ) = 0} of the Fourier transform 1̂K
seen as a function on Cn. This set plays a role in attempts to solve the famous
Pompeiu Problem, a long-standing open problem in integral geometry (see, for
instance, Garofalo and Segala [36] and Machado and Robins [49]), which we describe
in details in Section 7. Here we focus on the work of Kobayashi [45, 46] regarding
the geometric information about K contained in Z(K). In 1986 Kobayashi [45]
posed the following problem.

Problem 3.24. Does the zero set Z(K) = {ζ ∈ Cn : 1̂K(ζ) = 0} determine the
convex body K, among all convex bodies, up to translations?

(Note that a translation of K leaves Z(K) unchanged.) In the class of C∞
+ convex

bodies, Problem 3.24 has been solved by Kobayashi [45] in the planar case, but it
is still open for n ≥ 3. In connection with Problem 3.24, Kobayashi studies the
asymptotic behavior at infinity of Z(K), in any dimension but only in the case of
C∞

+ convex bodies. It turns out that this asymptotic behaviour contains information
about the width function of K and the ratio of the Gauss curvatures of ∂K at
antipodal points (see Proposition 3.26 and Problem 3.27 below).

In Bianchi [18] Kobayashi’s result regarding the asymptotics of Z(K) is proved

under weaker regularity assumptions, replacing K ∈ C∞
+ by K ∈ C

r(n)
+ , where r(n)

is as in Theorem 3.25. This is a key tool in the following positive answer to the

Covariogram Problem for C
r(n)
+ convex bodies in Rn, n ≥ 2.

Theorem 3.25 (Bianchi [18]). Let n ≥ 2 and define r(n) = 8 when n = 2, 4, 6,
r(n) = 9 when n = 3, 5, 7 and r(n) = [(n − 1)/2] + 5 when n ≥ 8. Let H and

K be convex bodies in Rn of class C
r(n)
+ . Then gH = gK implies H = K, up to

translations and reflections.
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Note that Theorem 3.25 only proves that the covariogram determines a C
r(n)
+

body among C
r(n)
+ bodies, and it is not known whether the determination holds

among all convex bodies.
We have explained in Section 3.1 that if K is C2

+ regular, then for each u ∈ Sn−1 ,
gK provides the nonordered pair {τK(u), τK(−u)}. Thus if H is of class C2

+ and
gH = gK , the continuity of the curvature implies that given any component U of
{u ∈ Sn−1 : τK(u) ̸= τK(−u)}, we have, possibly after a reflection of H,

(3.14) τH(u) = τK(u), for each u ∈ U .

If (3.14) were true for each u ∈ Sn−1 then H and K would coincide, up to a
translation, by the uniqueness part of Minkowski’s Theorem [66, Theorem 7.2.1].
However, a priori the reflection that makes (3.14) valid may depend on the component

U . The key ingredient in resolving this ambiguity, when the body is C
r(n)
+ regular,

is the fact that the maps Fm,K appearing in the statement of next proposition are
analytic.

Proposition 3.26 (Kobayashi [45], Bianchi [18]). Let S = {ζ ∈ Cn : ζ =
zu, with z ∈ C, u ∈ Sn−1}, where we identify zu and (−z)(−u), for each z ∈ C
and u ∈ Sn−1 . Let K be a convex body in Rn of class C

r(n)
+ , where r(n) is as in

Theorem 3.25. Then there exists a positive integer m(K) such that

Z(K) ∩ S =
(
C(K) ∪ ∪∞

m=m(K)Zm(K)
)
,

where C(K) is a bounded set and the union is disjoint. Moreover, for each integer
m ≥ m(K), there exists an analytic map Fm,K : Sn−1 → C such that

(3.15) Zm(K) = {Fm,K(u)u : u ∈ Sn−1},

where

(3.16) Fm,K(u) =
π(4m+ n− 1)

2wK(u)
+ i

ln τK(−u)− ln τK(u)

2wK(u)
+ O

(
1

m

)
and O(1/m) → 0 as m → ∞, uniformly in u ∈ Sn−1 .

Indeed, formula (2.3) implies that

{ζ ∈ Cn : ĝK(ζ) = 0} = Z(K) ∪ Z(K).

Thus gK gives the real part of Z(K) and hence, in view of (3.16), the width function
of K. This is nothing new, since DK, the support of gK , already determines wK .
But gK also determines the imaginary part of Z(K), up to conjugation. In view
of (3.16), it determines the imaginary part of Z(K), up to reflections of K. Thus if
H and K are as in Theorem 3.25 and, possibly, we have reflected H so that (3.14)
holds for u ∈ U , then

(3.17) Fm,H(u) = Fm,K(u) for m large enough and u ∈ U .

We can then use the analyticity of these maps to deduce that (3.17) holds for
u ∈ Sn−1 , which implies that (3.14) holds for u ∈ Sn−1 . This concludes the sketch
of the proof of Theorem 3.25.

We restate here [45, Problem 1.13] in the class C
r(n)
+ .
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Problem 3.27. If H,K ∈ Kn
n are in C

r(n)
+ and, for u ∈ Sn−1,

wH(u) = wK(u) and
τH(−u)

τH(u)
=

τK(−u)

τK(u)
,

is H = K, up to translations?

A positive answer implies, due to Proposition 3.26, a positive answer to Prob-

lem 3.24 in C
r(n)
+ . An answer is known only for n = 2, and is positive in that

case [45, Corollary 2.3.10].

3.6. Determination from cross covariogram. We restate the Cross Covariogram
Problem in greater generality.

Problem 3.28 (Cross Covariogram Problem). Does gH,K determine the pair (H,K)
of closed convex sets among all pairs of closed convex sets, up to trivial associates?

When H and K are convex polygons, and also when they are convex cones, a
complete answer is given in Bianchi [16]. When H and K are sufficiently regular
planar convex bodies, the solution can be found in Bianchi [18]. In the case of
polygons (and of cones as well) there are examples of nondetermination.

Example 3.29. Let α, β, γ, δ, α′, β′, γ′ and δ′ be positive real numbers, m ∈ R,
y, y′ ∈ R2, I1 = [(−1, 0), (1, 0)], I2 = 1/

√
2 [(−1,−1), (1, 1)], I3 = [(0,−1), (0, 1)],

I4 = 1/
√
2 [(1,−1), (−1, 1)] and I5 = (1/

√
1 +m2) [(−m,−1), (m, 1)]. Assume that

either m = 0, α′ ̸= γ′ and β′ ̸= δ′ or else m ̸= 0 and α′ ̸= γ′. We define four pairs
of parallelograms as follows (see Figure 2):

H1 = αI1 + βI2, K1 = γI3 + δI4 + y;

H2 = αI1 + δI4, K2 = βI2 + γI3 + y;

H3 = α′I1 + β′I3, K3 = γ′I1 + δ′I5 + y′;

H4 = γ′I1 + β′I3, K4 = α′I1 + δ′I5 + y′.

For i = 1, 3, we have gHi,Ki = gHi+1,Ki+1 but (Hi,Ki) is not a trivial associate of
(Hi+1,Ki+1).

The next theorem proves that, up to affine transformations, the previous coun-
terexamples are the only ones.

Theorem 3.30 (Bianchi [16]). Let H and K be convex polygons and let H ′ and K ′

be planar convex bodies with gH,K = gH′,K′ . If (H,K) is a not a trivial associate
of (H ′,K ′), then there is an affine transformation T and different indices i, j, with
either i, j ∈ {1, 2} or i, j ∈ {3, 4}, such that (T H, T K) and (T H ′, T K ′) are trivial
associates of (Hi,Ki) and of (Hj ,Kj), respectively.

Contrary to the situation for polygons, no counterexample exists among pairs of
sufficiently regular planar convex bodies.

Theorem 3.31 (Bianchi [18]). Let H,K,H ′ and K ′ be planar convex bodies of class
C8

+. Then gH,K = gH′,K′ implies that (H,K) and (H ′,K ′) are trivial associates.

In summary, the information provided by the cross covariogram of convex polygons
or of sufficiently smooth planar convex bodies is rich enough to determine not only
one unknown body, as required by Matheron’s Conjecture, but two bodies, with a
few exceptions.

Problem 3.27 is also relevant in trying to extend Theorem 3.31 to Rn, n > 2.
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K1

K2

y
o

o
y′

H2

H1

K4 K3

H4H3

Figure 2. Here, gH1,K1 = gH2,K2 and gH3,K3 = gH4,K4 . Moreover,
up to affine transformations, these are the only pairs of planar
convex polygons with equal cross covariograms.

4. Algorithms for reconstruction

None of the uniqueness proofs provide a method for actually reconstructing
a convex body from its covariogram. For the phase retrieval problems, many
algorithms have been developed, motivated by the diverse applications. We refer the
interested reader to [10], [26] and [27] for a description. We are aware of only three
papers dealing specifically with the reconstruction from the covariogram. Schmitt
[64] gives an explicit reconstruction procedure for a convex polygon when no pair
of its edges are parallel, an assumption removed in an algorithm due to Benassi
and D’Ercole [12]. Bianchi, Kiderlen and Gardner [19] solve the following three
problems. In each, K is a convex body in Rn.

Problem 4.1 (Reconstruction from covariograms). Construct an approximation to
K from a finite number of noisy (i.e., taken with error) measurements of gK .

Problem 4.2 (Phase retrieval for characteristic functions of convex bodies: squared
modulus). Construct an approximation to K (or, equivalently, to 1K) from a finite

number of noisy measurements of |1̂K |2.

Problem 4.3 (Phase retrieval for characteristic functions of convex bodies: modulus).
Construct an approximation to K from a finite number of noisy measurements of

|1̂K |.

In both [64] and [12], all the exact values of the covariogram are supposed to be
available. In contrast, the set of algorithms in [19] for Problem 4.1 take as input only
a finite number of values of the covariogram of K. Moreover, these measurements
are corrupted by errors, modeled by zero mean random variables with uniformly
bounded pth moments, where p is at most six and usually four. It is assumed that
K is determined by its covariogram, has its centroid at the origin, and is contained
in a known bounded region of Rn, which for convenience is taken to be the unit
cube [−1/2, 1/2]n. [19] provides two different methods for reconstructing, for each
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suitable k ∈ N, a convex polytope Pk that approximates K or its reflection −K.
Each method involves two algorithms, an initial algorithm that produces suitable
outer unit normals to the facets of Pk, and a common main algorithm that goes on
to actually construct Pk.

In the first method, the covariogram of K is measured, multiple times, at the
origin and at vectors (1/k)ui, i = 1, . . . , k, where the ui’s are mutually nonparallel
unit vectors that span Rn. From these measurements, the initial Algorithm Noisy-
CovBlaschke constructs an o-symmetric convex polytope Qk that approximates
∇K, the Blaschke body of K. The crucial property of ∇K is that when K is
a convex polytope, each of its facets is parallel to some facet of ∇K. It follows
that the outer unit normals to the facets of Pk can be taken to be among those of
Qk. Algorithm NoisyCovBlaschke utilizes (2.9), i.e., the fact that (∂+gK)/(∂u)(o)
equals the brightness function bK(u). This connection allows most of the work to be
done by an algorithm, designed earlier by Gardner and Milanfar (see [34] and the
references given there) for reconstructing a o-symmetric convex body from finitely
many noisy measurements of its brightness function.

The second method achieves the same goal with a quite different approach. This
time the covariogram of K is measured once at each point in a cubic array in [−1, 1]n

of side length 1/k. From these measurements, the initial Algorithm NoisyCovDiff(φ)
constructs an o-symmetric convex polytope Qk that approximates the difference
body DK. The set DK has precisely the same property as ∇K, that when K is a
convex polytope, each of its facets is parallel to some facet of DK. Furthermore, DK

is just the support of gK . The known property that g
1/n
K is concave can therefore

be combined with techniques from multiple regression. Algorithm NoisyCovDiff(φ)
employs a Gasser–Müller type kernel estimator for gK , with suitable kernel function
φ, bandwidth and threshold parameter.

The output Qk of either initial algorithm forms part of the input to the main
common Algorithm NoisyCovLSQ. The covariogram of K is now measured again,
once at each point in a cubic array in [−1, 1]n of side length 1/k. Using these
measurements, Algorithm NoisyCovLSQ finds a convex polytope Pk, each of whose
facets is parallel to some facet of Qk, whose covariogram fits best the measurements
in the least squares sense.

These algorithms are strongly consistent. Whenever K is determined among
convex bodies, up to translations and reflections, by its covariogram, [19] shows
that, almost surely,

min{δ(K,Pk), δ(−K,Pk)} → 0

as k → ∞. (If K is not so determined, the algorithms still construct a sequence
(Pk) whose accumulation points exist and have the same covariogram as K.) From
a theoretical point of view, this completely solves Problem 1.

The basic idea in [19] to solve Problem 4.2 is simple enough: Use (1.3) and the

measurements of |1̂K |2 at points in a suitable cubic array to approximate gK via
its Fourier series, and feed the resulting values into the algorithms for Problem 4.1.
Two major technical obstacles arise. The new estimates of gK are corrupted by
noise that now involves dependent random variables, and a new deterministic error
appears as well. A substitute for the Strong Law of Large Numbers must be proved,
and the deterministic error controlled using Fourier analysis and the fortunate fact
that gK is Lipschitz. In the end the basic idea works, assuming that for suitable

1/2 < γ < 1, measurements of |1̂K |2 are taken at the points in (1/kγ)Zn contained
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Figure 3. Pentagon, no noise. Figure 4. Pentagon, σ = 0.01.

in the cubic window [−k1−γ , k1−γ ]n, whose size increases with k at a rate depending
on the parameter γ. The three resulting algorithms, Algorithm NoisyMod2LSQ,
Algorithm NoisyMod2Blaschke and Algorithm NoisyMod2Diff(φ), are stated in
detail and, with suitable restrictions on γ, proved to be strongly consistent under
the same hypotheses as for Problem 4.1.

[19] also constructs three algorithms for Problem 4.3. Again there is a basic
simple idea, namely, to take two independent measurements at each of the points
in the same cubic array as in the previous paragraph, multiply the two, and feed
the resulting values into the algorithms for Problem 4.2. No serious extra technical
difficulties arise, and it is proved that the three new algorithms are strongly consistent
under the same hypotheses as for Problem 4.2. This provides a complete theoretical
solution to the Phase Retrieval Problem for characteristic functions of convex bodies.

The study in [19] is a theoretical one. Convergence rates are given for Algorithm
NoisyCovDiff(ϕ), and hence for the two related algorithms for phase retrieval, but
are missing for the other algorithms. In particular, proving convergence rates for
Algorithm NoisyCovLSQ would need suitable stability versions of the uniqueness
results for the Covariogram Problem, which are not available. Figures 3, 4, 5 and
6, taken from [19], present the reconstructions obtained in some experiments of a
rudimentary implementation of Algorithm NoisyCovBlaschke and NoisyCovLSQ in
the planar case. They are based on Gaussian N(0, σ2) noise, k = 60 equally spaced
directions in Algorithms NoisyCovBlaschke and k = 8 in Algorithm NoisyCovLSQ.

The website Geometric Tomography [32], a project of R. J. Gardner, offers a
GUI to access a basic implementation of the algorithms for Problem 1 in the plane.

5. What information about a set can be obtained from its
covariogram?

A natural question is to understand what information about a general regular
compact set C, not necessarily convex, can be obtained from gC . Only a few results
are known.

5.1. Recognizing convexity. There are some properties of the covariogram of a
convex set that may help in distinguishing it from a nonconvex one. For instance, the

concavity of g
1/n
C on its support, the convexity of supp gC and the inequality (2.6)

between gC(o) and the volume of supp gC coming from the Rogers–Shepard inequality.
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Figure 5. Ellipse, no noise. Figure 6. Ellipse, σ = 0.01.

Benassi, Bianchi and D’Ercole [11] give some other answers to this problem, mostly
in the case of planar sets. Their main result is synthesized in the following theorem.

Theorem 5.1. Let D be the class of regular compact sets in R2 whose interiors
have at most two components and let P denote the class of regular compact sets in
R2 whose boundaries consists of a finite number of closed disjoint polygonal curves,
each with finitely many edges.

If C ∈ D then the information provided by supp gC and by (∂+gC/∂u)(o), for all
u ∈ S1, determines whether C is convex. If C ∈ P then the information provided
by supp gC and by the discontinuities of ∇gC determines whether C is convex.

We explain the result regarding the class D. If C ⊂ R2 is a convex body and
u ∈ S1, the formula

bC(u) = wC(Rπ
2
u) =

1

2
wDC(Rπ

2
u),

allows (2.9) to be written as

(5.1) −∂+gC
∂u

(o) =
1

2
w supp gC (Rπ

2
u).

If C ∈ D is not convex, then there exists u ∈ S1 such that C|u⊥ is an interval and
C ∩ (lu + x) has at least two components for a set of x ∈ u⊥ of positive H1-measure.
For such u one can prove that either (∂+gC/∂u)(o) does not exist or

(5.2) −∂+gC
∂u

(o) >
1

2
w supp gC (Rπ

2
u),

violating (5.1). To see in a particular example why strict inequality holds in
(5.2), imagine what happens when C is the union of two disjoint convex bodies
C1 and C2 and u is as above. In this case, −(∂+gC/∂u)(o) = bC1

(u) + bC2
(u) =

H1(C1|u⊥) +H1(C2|u⊥), while the term on the right-hand side in (5.2) is

(5.3)
1

2
wDC(Rπ

2
u) =

1

2
wD(convC)(Rπ

2
u) = w convC(Rπ

2
u) =

= H1(conv(C1 ∪ C2)|u⊥) < H1(C1|u⊥) +H1(C2|u⊥).

The first equality in (5.3) is due to the fact that C|u⊥ is an interval, while the last
inequality holds because C1|u⊥ and C2|u⊥ overlap, a consequence of the assumption
about C ∩ (lu + x).
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When C ∈ P , the result rests ultimately on Lemma 3.20, which remains valid for
nonconvex elements of P . This lemma expresses the discontinuities of ∇gC through
the singular part of the distributional derivative ∂2gC/∂w

2, for w ∈ S1, i.e. through
the distribution defined by the second sum in (3.9). This distribution is supported
in the set formed by the differences of any two parallel edges of C, including the
differences of an edge with itself. This is a finite union of segments. Moreover, if
x ̸= o belongs to this set, it provides the length of ∂C ∩ (∂C + x). [11] proves that
this information and the knowledge of supp gC distinguishes between convex and
nonconvex sets in P.

A consequence of Theorem 5.1 is a strengthening of Theorem 3.2.

Corollary 5.2. Every planar convex body is determined within the class D ∪ P by
its covariogram, up to translations and reflections.

5.2. Recognizing symmetry properties. The covariogram gC is an even function,
independently of any symmetry property of C. When C is convex, recognizing from
gC whether C is centrally symmetric is possible.

Theorem 5.3. a) Let C ∈ Cn be regular. The set C is convex and centrally
symmetric if and only if 2ngC(o) = Hn(supp gC). If this equality holds, then
C = (1/2) supp gC , up to translations.

b) A centrally symmetric convex body is determined by its covariogram, up to
translations, in the class of all regular compact sets.

Proof. Item a) is a consequence of the equality condition in the inequality (2.5) in
Proposition 2.2, and of supp gC = DC = 2C. Item b) follows from Item a). □

In contrast to this, we do not know of a way of recognizing from gC the central
symmetry of a nonconvex set C.

Is it possible to recognize the radial symmetry of the set from its covariogram. A
result of Lawton [47, Corollary 1] yields the following theorem.

Theorem 5.4. Let n ≥ 2 and let C ⊂ Rn be a regular compact set such that gC
is radially symmetric. Then a translation of C is radially symmetric and C is
determined by gC , up to translations and reflections, in the class of regular compact
sets.

Lawton proves the corresponding result for real-valued L2(Rn) functions with
compact support using techniques from the theory of functions of several complex
variables. More precisely, the result is a consequence of a representation formula for
entire functions of exponential type such that the modulus of their restriction to Rn

is radially symmetric and in L2(Rn).

6. The discrete covariogram

There is a counterpart to the covariogram in the discrete case. The discrete
covariogram gA of a finite subset A of Rn is defined by

(6.1) gA(x) = |A ∩ (A+ x)|,
for x ∈ Rn. When no confusion can arise, we shall refer to the discrete covariogram
of a finite set simply as its covariogram. As in the case of the ordinary (continuous)
covariogram, it is unchanged by a translation or a reflection, and its support is DA.
Note that

gA(x) = |{y ∈ A : y − x ∈ A}|,
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i.e., gA(x) is the number of “chords” of A that are translates of the line segment
[o, x]. Thus the covariogram can be identified with the multiset A+ (−A), that is,
the set DA where each element is repeated with multiplicity. In particular, gA = gB
if and only if A and B have the same set of chords, each repeated with multiplicity,
and this is true if and only if A+ (−A) and B + (−B) are equal as multisets.

Finite sets with equal covariograms are sometimes called homometric. Also
multisets A and B such that the multisets A+ (−A) and B + (−B) are equal are
called homometric. When two sets are homometric and not equal up to translations
and reflections, we say that they are nontrivially homometric. We refer to the survey
paper of Senechal [67] for an introduction to homometric sets. Here we mention
only a few facts.

If A and B are multisets, then the multisets

(6.2) A+B and A+ (−B)

are homometric. Indeed,

(A+B)+
(
− (A+B)

)
= A+(−A)+B+(−B) =

(
A+(−B)

)
+
(
− (A+(−B))

)
.

If |A| = 2 or |B| = 2, then A or B is centrally symmetric and the two sets in (6.2)
are equal up to translations and reflections. Thus one cannot construct four-, six-
and eight-point nontrivially homometric pairs this way, but nine-point pairs abound.
If A and B are sets, not multisets, and each point of A+B (and of A+ (−B)) can
be written in an unique way as sum of a point of A and a point of B (or of −B,
respectively), then A+B and A+(−B) are sets with equal covariograms. Thus, for
example, {0, 1, 3, 8, 9, 11, 12, 13, 15} and {0, 1, 3, 4, 5, 7, 12, 13, 15} in R have equal
covariograms and arise from the above construction by taking A = {6, 7, 9} and
B = {−6, 2, 6}. Not every homometric set can be constructed by this procedure.
For example, {0, 1, 2, 5, 7, 9, 12} and {0, 1, 5, 7, 8, 10, 12} have equal covariograms,
but do not arise from the above construction. Indeed, if they did, we would have
|A||B| = |A+B| = 7 and hence either |A| = 1 or |B| = 1, an impossibility.

Gardner, Gronchi and Zong [33, Theorem 4.5] establish the following connection
between the discrete and the continuous covariogram.

Theorem 6.1. Let A and B be finite subsets of Rn with equal discrete covariograms.
If X is a bounded Lebesgue-measurable set such that

Hn(A+X) = |A|Hn(X) and Hn(B +X) = |B|Hn(X),

then A+X and B +X have equal continuous covariograms.

The assumption Hn(A+X) = |A|Hn(X) says that there are no overlaps in the
sum A + X, i.e. in the union

⋃
a∈A(X + a), except for sets of measure zero. A

consequence of this theorem is that if A and B are lattice sets with equal discrete
covariograms, then the associated lattice bodies A + [0, 1]n and B + [0, 1]n have
equal continuous covariograms.

Gardner, Gronchi and Zong [33] present a pair of noncongruent nonconvex
polygons with equal covariograms; see Figure 7. They are the lattice bodies
associated to nontrivially homometric planar polyominoes which can be written as
A+B and A+ (−B), where A and B are the lattice sets in Figure 8.

Another pair of planar lattice bodies with equal covariograms, made of nine
squares and not equal up to translations and reflections, appeared in [24, Figure 1].
The polyominoes in the examples in [33] and in [24] are convex, and the associated
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Figure 7. Two noncongruent nonconvex polygons with equal
covariograms. They arise as lattice bodies of two homometric con-
vex polyominoes.

A

B

Figure 8. The polyominoes in Figure 7 are equal to A+B and A+ (−B).

lattice bodies are both horizontally and vertically convex. In the example in [24]
one lattice body is the reflection with respect to a line of the other one.

Gardner, Gronchi and Zhong [33] prove that a centrally symmetric finite set A
is determined by gA, up to translations, in the class of centrally symmetric finite
sets, thus extending Theorem 3.1 to the discrete case. Averkov [2] considerably
strengthens this result by proving that the determination holds in the class of all
finite sets.

Theorem 6.2 (Averkov [2]). A centrally symmetric finite subset A of Rn is deter-
mined by gA, up to translations, in the class of all finite sets.

Proof. Let B be a finite subset of Rn with gA = gB .
Suppose that n = 1; this case contains the heart of the proof. Let a = max supp gA.

Then

(6.3) DA = supp gA ⊂ [−a, a] and a ∈ DA,

and analogous formulas hold for B. We may assume that a > 0, because otherwise
A is a singleton, the same is true for B, and therefore B is a translate of A. The
first formula in (6.3) implies that a translate of A is contained in [0, a]. We may
thus assume, up to translations, that

A ⊂ [0, a] and B ⊂ [0, a].

The second formula in (6.3) implies 0, a ∈ A. Similarly, 0, a ∈ B. The set A
is symmetric about a/2. Let A ∩ [a/2, a] = {y1, y2, . . . , ym}, with m ∈ N and
appropriate y1 < y2 < · · · < ym = a. We show by (reverse) induction that the sets

Ak = ([0, a− yk] ∪ [yk, a]) ∩A and Bk = ([0, a− yk] ∪ [yk, a]) ∩B

coincide, for every k = 1, . . . ,m. For k = m this follows from 0, a ∈ A ∩B.
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Suppose that Ak+1 = Bk+1.
We claim that B∩ (yk, yk+1) = ∅. Assume the contrary and let x ∈ B∩ (yk, yk+1).

All pairs (x0, x1) with x0, x1 ∈ A and x1 − x0 = x satisfy x0, x1 ∈ Ak+1 = Bk+1.
Indeed, x1 = x0 + x ≥ x > yk and x0 = x1 − x ≤ a − x < a − yk. Furthermore,
B possesses at least one further pair (x0, x1) with x0, x1 ∈ B and x1 − x0 = x,
since we may set x0 = 0 and x1 = x. By the definition of the points yk, we have
A ∩ (yk, yk+1) = ∅ and therefore x ̸∈ A. Hence gB(x) > gA(x), a contradiction. An
analogous argument proves that B ∩ (a− yk+1, a− yk) = ∅.

Next we show that {a−yk, yk} ⊂ B. We look at the pairs (x0, x1) with x0, x1 ∈ A
and x1 − x0 = yk. Since x1 = x0 + yk ≥ yk and equality holds if and only if x0 = 0,
either (x0, x1) = (0, yk) or x1 ∈ Ak+1. Analogously, either (x0, x1) = (a− yk, a) or
x0 ∈ Ak+1. Thus,

gA(yk) = |{(x0, x1) : x0, x1 ∈ A, x1 − x0 = yk}|
= |{(x0, x1) : x0, x1 ∈ Ak+1, x1 − x0 = yk}|+ |{(0, yk), (a− yk, a)}|
= |{(x0, x1) : x0, x1 ∈ Bk+1, x1 − x0 = yk}|+ |{(0, yk), (a− yk, a)}|
≥ gB(x)

and equality holds if and only if (0, yk), (a − yk, a) ∈ B × B, i.e., a − yk, yk ∈ B.
This concludes the proof that Ak = Bk and, by induction, that A1 = B1. To prove
that A = B it remains to prove that B ∩ (a− y1, y1) = ∅, and this can be done via
analogous arguments.

Now assume that n > 1. We argue by induction on n and assume the claim true
for dimension n− 1 ≥ 1. Without loss of generality, we assume that o is the centroid
both of A and of B. Let

U = Sn−1 \
{
(x1 − x2)/|x1 − x2| : x1, x2 ∈ supp gA, x1 ̸= x2

}
.

If u ∈ U , then the orthogonal projection of Rn onto u⊥ is injective on the sets A and
B. It is not difficult to prove that this projection maps sets with equal covariograms
to sets with equal covariograms. The inductive hypothesis, the central symmetry of
A|u⊥, and the assumption about the centroids of A and B prove that A|u⊥ = B|u⊥.
This is true for every u ∈ U and hence for infinitely many u ∈ Sn−1. Heppes [40]
proves that a finite set with cardinality k is determined by its orthogonal projections
in k + 1 mutually nonparallel directions. This implies A = B. □

This result applies also to lattice sets and, due to Theorem 6.1, it implies the
following corollary.

Corollary 6.3 (Averkov [2]). A centrally symmetric lattice body A ⊂ Rn is deter-
mined by gA, up to translations, in the class of all lattice bodies.

Averkov and Langfeld [6, 7] study the problem of determination from the co-
variogram in the class of convex lattice sets in Z2. The polyominoes associated
to the examples of nondetermination in [33] and [24] discussed above are convex
and therefore we cannot expect a global positive answer. In [6] it is shown that if
a planar convex lattice set A samples convA well enough (that is, if, in a certain
sense, A is close enough to a convex polygon) then the determination from gA is
similar to the determination in the case of convex polygons.

We need some terminology. For u ∈ R2 \ {o}, let Au = {x ∈ A : ⟨x, u⟩ = hA(u)}
denote the support set of A in the direction u. A support set Au which contains
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more than one element will be called an edge of A with outer normal u. Let

U(A) = {(u1, u2) ∈ Z2 \ {o} : (u1, u2) is an outer normal to an edge of A

and u1 and u2 are relatively prime}.
To measure the number of lattice points on the edges of A and the difference between
the number of points on one edge and the number of points on the antipodal parallel
edge, we introduce the following functions:

m′(A) = min{|Au|, u ∈ U(A)},
m′′(A) = min{|Au| − |A−u|+ 1 : u ∈ Z2 \ {o} and |Au| > |A−u| > 1},
m(A) = min{m′(A),m′′(A)},

where we use the convention that min ∅ = ∞.

Theorem 6.4 (Averkov and Langfeld [6]). Let A be a convex lattice set in Z2. Then
m′(A), m′′(A), m(A) and U(A) ∪ U(−A) are determined by gA. Let l ∈ N be such
that U(A) ∪ U(−A) ⊂ {−l, . . . , l}2. If m(A) > 4l4 + 2l2 + 1, then A is determined
by gA in the class of convex lattice sets in Z2.

Thus, for a given collection of prescribed edge normals, A is determined if all its
edges have sufficiently large cardinality and the difference between cardinalities of
parallel edges is either zero or sufficiently large.

Averkov and Langfeld [6, 7] also make substantial progress towards understanding
the structure of nontrivially homometric pairs of convex lattice sets in Zn.

Example 6.5. ([6]) Let k ∈ N \ {0}, w1 = (−k − 1, 1), w2 = (k, 1) and

L = Zw1 + Zw2.

Choose A to be any finite subset of L which is convex with respect to L (i.e.,
A = (convA) ∩ L) and such that each edge of the polygon convA is parallel either
to w1 or to w2 or to w2 − w1 = (−1, 2). Let

B = ({0, . . . , k} × {0}) ∪ ({0, . . . , k − 1} × {1}) .
The lattice sets A + B and A + (−B) in Z2 are convex (with respect to Z2) and
have the same covariogram. If A is not centrally symmetric, A+B and A+ (−B)
are not equal up to translations and reflections. See Figure 9.

Up to linear transformations of Z2 and up to translations of K and L, the
nontrivially homometric pairs H and K from [24, 33] are members of the family
presented in Example 6.5. The example in [24] is obtained by taking k = 1 and
A = {(0, 0), (2,−1), (1,−2)}, and that in [33] is obtained by taking k = 1 and
A = {(0, 0), (1, 1), (1,−2), (2,−1), (3, 0)}, and applying to H and K the linear
transformation (x, y) → (x− y, y).

The lattice L in Example 6.5 is 2-dimensional and B is convex with respect to Z2.
Moreover Z2 = L+B and this is a direct sum (which, in this setting, means that
each element of Z2 can be written in an unique way as sum of elements of L and
B). This implies that the translations of B by vectors in L tile Z2. [7, Theorem 2.4]
proves that if B is a convex subset of Z2 and L ⊂ Z2 is a 2-dimensional lattice such
that Z2 is the direct sum L+B, then the sets A+B and A+ (−B) are nontrivially
homometric if and only if, up to linear transformations in Z2 and translations, A,
B and L are those described in Example 6.5.
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w1 w2

w1 w2

Figure 9. The sets A+B (the union of the black and white points
above) and A + (−B) (below). The elements of A are drawn as
black points and the convex hulls of the translates of B and −B
are indicated by gray polygons (from [6]).

One may wonder whether there are nontrivially homometric pairs of convex lattice
sets in Z2 that do not arise from the construction A+B and A+(−B). Averkov and
Langfeld [6] write that they performed an exhaustive computer search of such pairs
among lattice sets which are contained in {1, . . . , 6} × {1, . . . , 5} without finding
any.

[7, Example 5.5] presents the first examples of nontrivially homometric convex
sets in Zn, for any n ≥ 2, which are intrinsically n-dimensional, in the sense that
they are not lifted from Z2 by taking Cartesian products.

7. Connections to Fourier analysis

In the previous sections we have already seen applications of results from Fourier
analysis in studying the problem of determination from the covariogram. Here
we present some other connections. They come from the literature on the phase

retrieval problem and deal with the irreducibility of 1̂K . This connection also shows
a link between the Covariogram Problem and the Pompeiu Problem in integral
geometry.

We say that an entire function g is irreducible if g cannot be written as the
product of entire functions g1 and g2 with g1 ̸= ag2, for each a ∈ C, and with both
{ζ ∈ Cn : g1(ζ) = 0} and {ζ ∈ Cn : g2(ζ) = 0} nonempty.

Let f ∈ L2(Rn) have compact support. Sanz and Huang [63] prove that if f̂
is irreducible, then f is determined, up to trivial associates, by the knowledge of

|f̂(x)| for all x ∈ Rn. Barakat and Newsam [9] and Stefanescu [68] prove that if
f1 and f2 belong to L2(R2), have compact support, are not trivial associates and

|f̂1(x)| = |f̂2(x)| for all x ∈ R2, then there exist entire functions g1 and g2 such that
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{ζ ∈ C2 : g1(ζ) = 0} and {ζ ∈ C2 : g2(ζ) = 0} are both nonempty and

(7.1) f̂1(ζ) = g1(ζ)g2(ζ) and f̂2(ζ) = ei(c+⟨d,ζ⟩)g1(ζ)g2
(
ζ
)
,

for ζ ∈ C2 and suitable c ∈ R and d ∈ R2. I. S. Stefanescu, in a letter to the author,
has expressed the opinion that a similar result holds in any dimension n ≥ 2. It

is not known whether the property that f̂ is not irreducible implies that f is not

determined by |f̂ |.
What is the significance of these results for the Covariogram Problem? All the

examples of nondetermination presented in Section 3.2 arise from a factorization of

1̂K as in (7.1). Indeed if E, F , H and K are as in Theorem 3.11, and E and F are
orthogonal subspaces, then

1H+K = δH ∗ δK and 1H+(−K) = δH ∗ δ−K ,

where δH and δK are the distributions defined for ϕ ∈ C∞
0 (Rn) by

δH(ϕ) =

∫
H

ϕ(x, 0) dx, δK(ϕ) =

∫
K

ϕ(0, y) dy

(here dx and dy indicate integration with respect to Lebesgue measure in E and in

F , respectively), and δ−K is defined similarly. By the Paley–Wiener Theorem, δ̂H ,

δ̂K and δ̂−K are entire functions in Cn of exponential type. Clearly δ̂−K(ζ) = δ̂K
(
ζ
)

and we have

1̂H+K(ζ) = δ̂H(ζ)δ̂K(ζ) and ̂(1H+(−K))(ζ) = δ̂H(ζ)δ̂K
(
ζ
)
,

as in (7.1).
In view of these results it would be interesting to study the following problem.

Problem 7.1. Find explicit geometric conditions on a convex body K which guarantee

that 1̂K is irreducible.

To appreciate the difficulty in answering to this question, consider the following
subproblem.

Understand for which convex bodies K the function 1̂K is the product of a
nontrivial polynomial and an entire function.

We need some notation. Given a polynomial p(ζ) =
∑

|l|≤m clζ
l, where m ∈ N,

l = (l1, . . . , ln) denotes a multi-index, cl ∈ C, |l| = li + · · ·+ ln and ζl = ζl11 · · · ζlnn ,
let p(D) denote the differential operator

p(D) =
∑
|l|≤m

(i)−|l|cl

(
∂l1/∂xl1

1

)
· · ·
(
∂ln/∂xln

n

)
,

where ∂0/∂x0
i denotes the identity operator. [60, Theorem 8.4] states that

1̂K = fp,

with f entire and p a polynomial, if and only if the equation

(7.2) p(D)u = 1K ,

has a solution u in the class of distributions with support contained in K. Here
û = f and (7.2) has to be understood in the sense of distributions. The theorem of
supports for convolutions [41, Theorem 4.3.3] and elementary considerations imply
that if a solution u to (7.2) exists, then its support is K.
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A particular instance of this problem has received much attention. When p(ζ) =
ζ21 + · · ·+ ζ2n − c, for some c > 0, (7.2) becomes

(7.3)

{
∆u+ cu = −1 in K

u = ∂u
∂ν = 0 on ∂K,

where ν denotes the exterior normal to ∂K. Let E ⊂ Rn be a bounded simply
connected Lipschitz domain. The Pompeiu Problem asks whether there exists a
nonzero continuous function f : Rn → R such that∫

T (E)

f dx = 0 for all rigid motions T in Rn

only when E is a ball. It is known that the Pompeiu Problem is equivalent to asking
whether a solution to (7.3) (with K replaced by E) exists for some c > 0 only if E
is a ball (see Berenstein [13]). As far as we know, these problems are still open.

The example of a ball implies that the irreducibility condition is not necessary
for determination by covariogram. Indeed, when K is a ball a solution to (7.3)

exists and 1̂K factors. On the other hand, in any dimension a ball K is uniquely
determined by gK , as Theorem 5.4 implies.
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[41] L. Hörmander, The analysis of linear partial differential operators. I. Distribution theory
and Fourier analysis, Reprint of the second (1990) ed., Classics in Mathematics, Springer,

Berlin, 2003.

[42] N. E. Hurt, Phase retrieval and zero crossings, Mathematical methods in image reconstruction,
52, Kluwer Academic Publishers Group, Dordrecht, 1989.

[43] K. Kiener, Extremalität von Ellipsoiden und die Faltungsungleichung von Sobolev, Arch.

Math. (Basel), 46 (1986), pp. 162–168.
[44] M. V. Klibanov, P. E. Sacks, and A. V. Tikhonravov, The phase retrieval problem, Inverse

Problems, 11 (1995), pp. 1–28.

[45] T. Kobayashi, Asymptotic behaviour of the null variety for a convex domain in a non-
positively curved space form, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 36 (1989), pp. 389–478.



38 1

[46] , Convex domains and the Fourier transform on spaces of constant curvature, in Lecture
notes of the Unesco-Cimpa School on “Invariant differential operators on Lie groups and

homogeneous spaces”, P. Torasso, ed., WuHan University, China, 1991.
[47] W. Lawton, Uniqueness results for the phase-retrieval problem for radial functions, J. Opt.

Soc. Amer., 71 (1981), pp. 1519–1522.

[48] D. R. Luke, J. V. Burke, and R. G. Lyon, Optical wavefront reconstruction: theory and
numerical methods, SIAM Review, 44 (2002), pp. 169–224.

[49] F. C. Machado and S. Robins, The null set of a polytope, and the Pompeiu property for

polytopes, arxiv:2104.01957, (2021).
[50] C. L. Mallows and J. M. C. Clark, Linear-intercept distributions do not characterize plane

sets, J. Appl. Probability, 7 (1970), pp. 240–244.
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