MATERIALE PER IL CORSO “DIDATTICA DEL CALCOLO DIFFERENZIALE E INTEGRALE”

GABRIELE BIANCHI

1. Introduzione

2. Riflessione critica su alcuni argomenti di Analisi

2.1. Numeri reali.

2.2. Funzioni.

2.3. Limite.

2.4. Derivata.

2.5. Integrale.

Riferimenti bibliografici

[AiZi]    M. Aigner, G. Ziegler, Proofs from THE BOOK, Springer

[Bal]    K. Ball, Strange curves, counting rabbits and other mathematical explorations, Princeton University Press

[Bra]    M. Bramanti, Una proposta didattica: come e perché insegnare gli integrali, Emmeciquadro, 36 (2009), 47–53 http://web.math.unifi.it/users/bianchi/didattica_del_calcolo/mc2_n36_02_nsf_bramanti_integrali.pdf

[Ber]    M. Berni, Note per un corso di Analisi zero, L’insegnamento della matemtica e delle scienze integrate 25 (2002).

[Bur]    M. Burchi, Numeri reali: che c’è di sbagliato nel pensarli come decimali infiniti?, Tesi di Laurea Magistrale, a.a. 2012-13 http://web.math.unifi.it/users/bianchi/didattica_del_calcolo/tesi_manuele_burchi_versione_18mar2014.pdf

[CoRo]    Courant, Robbins, Che cos’é la matematica, Boringhieri.

[SF1]    Education Committee of the EMS, Solid findings: It is Necessary that Teachers are Mathematically Proficient, but is it Sufficient? Solid Findings in Mathematics Education on Teacher Knowledge. Newsletter of the European Mathematical Society, March 2012, 46-50. http://www.euro-math-soc.eu/ems_education/Solid_Findings_Teacher_Knowledge_Newsletter.pdf

[SF2]    Education Committee of the EMS, Solid Findings: Concept Images in students mathematical reasoning, Newsletter of the European Mathematical Society, September 2014, 50–52. http://web.math.unifi.it/users/bianchi/didattica_del_calcolo/EMS_solid_findings_ConceptImage

[SF3]    Education Committee of the EMS, Solid Findings: Students’ over-reliance on linearity, Newsletter of the European Mathematical Society, March 2015, 51–53. http://www.eu-maths-in.eu/EUMATHSIN/wp-content/uploads/2016/02/2015-EMS-Newsletter-Eu-Maths-In.pdf

[Edw]    C. H. Edwards, The historical development of the calculus, Springer.

[Eis]    M. Eisermann, Comment fonctionne Google? http://www.igt.uni-stuttgart.de/eiserm/popularisation/#google

[Giu1]    E. Giusti, Piccola storia del calcolo infinitesimale dall’antichità al 900

[Giu2]    E. Giusti, Analisi uno, Boringhieri

[Gow1]    T. Gowers, What is so wrong with thinking of real numbers as infinite decimals? http://www.dpmms.cam.ac.uk/~wtg10/decimals.html

[Gow2]    T. Gowers, A dialogue concerning the need for the real number system. http://www.dpmms.cam.ac.uk/~wtg10/reals.html

[Gra]    J.V. Grabiner,The changing concept of change: the derivative from Fermat to Weierstrass, Mathematics magazine 56 (1983). http://www.maa.org/programs/maa-awards/writing-awards/the-changing-concept-of-change-the-derivative-from-fermat-to-weierstrass.

[Gro]    C.W. Groetsch, Inverse problems and Torricelli’s Law, The College Mathemathics Journal 23 (1992), 146–148, http://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020757.02p00026.pdf.

[Lev]    T. Leviatan, Introducing real numbers: when and how?, ICME 04. BROKEN LINK http://www.icme-organisers.dk/tsg12/papers/barthel-leviathan.html

[Kle]    F. Klein, Elementary mathematics from an advanced viewpoint, Arithmetic, Algebra and Analysis, MacMillan and Co.

[Kle2]    I. Kleiner, Evolution of the Function Concept: A Brief Survey, The College Mathematics Journal, 20 (1989), 282300, http://www.maa.org/programs/maa-awards/writing-awards/evolution-of-the-function-concept-a-brief-survey.

[Mag]    F. Magnanini, Il concetto matematico di limite: un percorso didattico a partire dall’analisi dei misconcetti tipici (The mathematical concept of limit: from an analysis of common misconceptions to a didactical experience), Tesi di Laurea Magistrale, a.a. 2013-14 http://web.math.unifi.it/users/bianchi/didattica_del_calcolo/tesi_francesca_magnanini.pdf

[MaWe]    J. Marsden, A. Weinstein, Calculus UNlimited, Benjamin, 1981 http://authors.library.caltech.edu/25054/

[Puc]    C. Pucci, Dispense del corso di Istituzioni di Analisi superiore

[Ric]    R. Ricci, Appunti per il corso di Analisi SSIS 06-07. http://web.math.unifi.it/ssis/note_ricci_07.pdf

[Ric2]    V.F. Rickey, The Clepsydra problem.http://fredrickey.info/hm/CalcNotes/clepsydra.pdf

[Rou]    C. Rousseau, How Google works: Markov Chains and eigenvalues, Klein project Blog http://blog.kleinproject.org/?p=280.

[TaVi]    D. Tall e S. Vinner, Concept image and concept definition in mathematics with particular reference to Limits and continuity, Educational Studies in Mathematics 12 (1981), 151–169,https://homepages.warwick.ac.uk/staff/David.Tall/pdfs/dot1981a-concept-image.pdf.

[TMR]    D. Tall, J. P. Mejia Ramos, Reflecting on post-calculus reform, ICME 2004 http://www.warwick.ac.uk/staff/David.Tall/pdfs/dot2004b-tall-meija-icme.pdf

[Tre]    W. F. Trench, Introduction to Real Analysis (2013). Books and Monographs. Book 7. http://digitalcommons.trinity.edu/mono/7

[Vin]    S. Vinner, Concept definition, concept image and the notion of function, Int. J. Math. Educ. Sci. Technol. 14 (1983), 293–305.

[Wik1]    Wikipedia: Construction of the real numbers. http://en.wikipedia.org/wiki/Construction_of_the_real_numbers

[Wik2]    Wikipedia: Logarithms. http://en.wikipedia.org/wiki/Logarithm

[Wik3]    Wikipedia: Riemann integral. http://en.wikipedia.org/wiki/Riemann_integral

[Wik4]    Wikipedia: Darboux integral. http://en.wikipedia.org/wiki/Darboux_integral

Dipartimento di Matematica, Università di Firenze, Viale Morgagni 67/A, Firenze, Italy I-50134